Greedy MaxCut Algorithms and their Information Content

Yatao Bian, Alexey Gronskiy and Joachim M. Buhmann

Machine Learning Institute, ETH Zurich

April 27, 2015

Greedy MaxCut Algorithms

Approximation Set Coding (ASC)

Applying ASC: Count the Approximation Sets

Applying ASC: Experiments and Analysis

Greedy MaxCut Algorithms

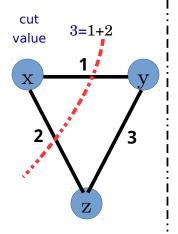
Approximation Set Coding (ASC)

Applying ASC: Count the Approximation Sets

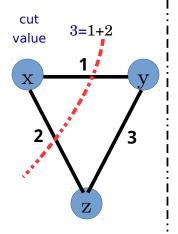
Applying ASC: Experiments and Analysis

MaxCut: classical NP-hard problem

• G = (V, E), vertex set V, edge set E, weights $w_{ij} \ge 0$

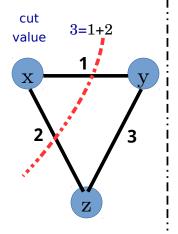


- G = (V, E), vertex set V, edge set E, weights $w_{ij} \ge 0$
- CUT $c := (S, V \setminus S)$, cut space $C(|\mathcal{C}| = 2^{n-1} 1)$



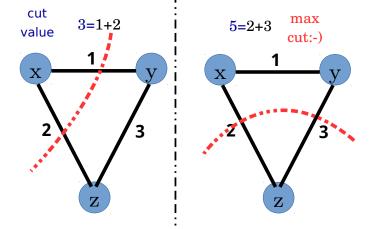
- G = (V, E), vertex set V, edge set E, weights $w_{ij} \ge 0$
- CUT $c := (S, V \setminus S)$, cut space $C (|\mathcal{C}| = 2^{n-1} 1)$

• Cut value:
$$\operatorname{cut}(c,G) := \sum_{i \in S, j \in V \setminus S} w_{ij}$$



- G = (V, E), vertex set V, edge set E, weights $w_{ij} \ge 0$
- CUT $c := (S, V \setminus S)$, cut space $C (|\mathcal{C}| = 2^{n-1} 1)$

• Cut value:
$$\operatorname{cut}(c,G) := \sum_{i \in S, j \in V \setminus S} w_{ij}$$



Name	Greedy	Techniques	
	Heuristic	Sorting	Init. Vertices
Deterministic Double Greedy			
SG (Sahni & Gonzales)	Double		\checkmark
SG3 (variant of SG)		\checkmark	\checkmark
Edge Contraction (EC)	Backward	\checkmark	

Deterministic Double Greedy (D2Greedy)

Deterministic Double Greedy (D2Greedy)

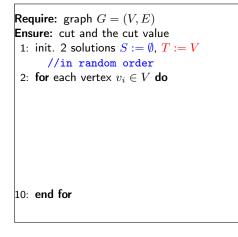
Require: graph G = (V, E)Ensure: cut and the cut value

Deterministic Double Greedy (D2Greedy)

Require: graph G = (V, E)Ensure: cut and the cut value 1: init. 2 solutions $S := \emptyset$, T := V

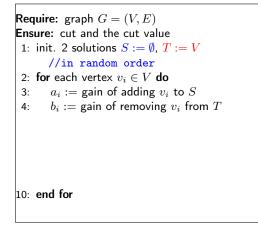
• works on 2 solutions simultaneously

Deterministic Double Greedy (D2Greedy)



• works on 2 solutions simultaneously

Deterministic Double Greedy (D2Greedy)



• works on 2 solutions simultaneously

Deterministic Double Greedy (D2Greedy)

```
Require: graph G = (V, E)
Ensure: cut and the cut value
 1: init. 2 solutions S := \emptyset, T := V
      //in random order
 2: for each vertex v_i \in V do
 3: a_i := \text{gain of adding } v_i \text{ to } S
   b_i := gain of removing v_i from T
 4.
 5: if a_i > b_i then
         add v_i to S
 6:
 7. else
         remove v_i from T
 8:
     end if
 9:
10: end for
```

• works on 2 solutions simultaneously

Deterministic Double Greedy (D2Greedy)

```
Require: graph G = (V, E)
Ensure: cut and the cut value
 1: init. 2 solutions S := \emptyset, T := V
      //in random order
 2: for each vertex v_i \in V do
 3: a_i := \text{gain of adding } v_i \text{ to } S
 4: b_i := gain of removing v_i from T
 5: if a_i > b_i then
 6: add v_i to S
 7. else
         remove v_i from T
 8:
    end if
 Q٠
10: end for
11: return cut: (S, V \setminus S), cut value
```

• works on 2 solutions simultaneously

Deterministic Double Greedy (D2Greedy)

```
Require: graph G = (V, E)
Ensure: cut and the cut value
 1: init. 2 solutions S := \emptyset, T := V
      //in random order
 2: for each vertex v_i \in V do
 3: a_i := \text{gain of adding } v_i \text{ to } S
 4: b_i := gain of removing v_i from T
 5: if a_i > b_i then
 6: add v_i to S
 7. else
       remove v_i from T
 8:
     end if
 Q٠
10: end for
11: return cut: (S, V \setminus S), cut value
```

• works on 2 solutions simultaneously

 \bullet for each vertex, decides whether it should be added to S, or removed from T

Differences between the double greedy algorithms:

Deterministic Double Greedy (D2Greedy)

```
Require: graph G = (V, E)
Ensure: cut and the cut value
 1: init. 2 solutions S := \emptyset, T := V
      //in random order
 2: for each vertex v_i \in V do
 3: a_i := \text{gain of adding } v_i \text{ to } S
 4: b_i := gain of removing v_i from T
 5: if a_i > b_i then
 6: add v_i to S
 7. else
      remove v_i from T
 8:
     end if
 Q٠
10. end for
11: return cut: (S, V \setminus S), cut value
```

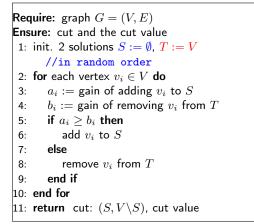
• works on 2 solutions simultaneously

 \bullet for each vertex, decides whether it should be added to S, or removed from T

Differences between the double greedy algorithms:

D2Greedy \rightarrow select the first 2 vertices \rightarrow SG

Deterministic Double Greedy (D2Greedy)



• works on 2 solutions simultaneously

 \bullet for each vertex, decides whether it should be added to S, or removed from T

Differences between the double greedy algorithms:

$$\begin{array}{ccc} \mbox{D2Greedy} \ \rightarrow & \mbox{select the first 2 vertices} & \rightarrow & \mbox{SG} \\ \mbox{SG} & \rightarrow & \mbox{sort the candidates} & \rightarrow & \mbox{SG3} \end{array}$$

Edge Contraction (EC)

Edge Contraction (EC)

Require: graph G = (V, E)**Ensure:** cut, cut value

Edge Contraction (EC)

Require: graph G = (V, E)Ensure: cut, cut value

1: repeat

5: until 2 "super" vertices left

Edge Contraction (EC) Require: graph G = (V, E)Ensure: cut, cut value 1: repeat 5: until 2 "super" vertices left

Edge Contraction (EC) • contract the lightest edge in **Require:** graph G = (V, E)each step Ensure: cut, cut value 1: repeat contraction x 5: until 2 "super" vertices left 2

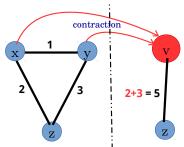
v

 \mathbf{Z}

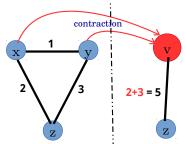
2+3 = 5

 \mathbf{z}

Edge Contraction (EC) • contract Require: graph G = (V, E)Ensure: cut, cut value 1: repeat 2: find the lightest edge (x, y) in G5: until 2 "super" vertices left



Edge Contraction (EC) Require: graph G = (V, E)Ensure: cut, cut value 1: repeat 2: find the lightest edge (x, y) in G3: contract x, y to be a super vertex v5: until 2 "super" vertices left

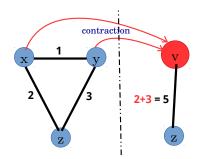


Edge Contraction (EC)

Require: graph G = (V, E)Ensure: cut, cut value

1: repeat

- 2: find the lightest edge (x, y) in G
- 3: contract x, y to be a super vertex v
- 4: set the edge weights connecting v
- 5: until 2 "super" vertices left

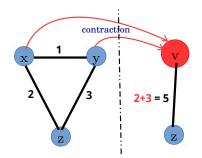


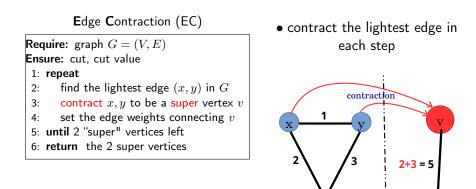
Edge Contraction (EC)

Require: graph G = (V, E)Ensure: cut, cut value

1: repeat

- 2: find the lightest edge (x, y) in G
- 3: contract x, y to be a super vertex v
- 4: set the edge weights connecting v
- 5: until 2 "super" vertices left
- 6: return the 2 super vertices





Backward greedy: EC tries to remove the lightest edge from the cut set in each step

Greedy MaxCut Algorithms

Approximation Set Coding (ASC)

Applying ASC: Count the Approximation Sets

Applying ASC: Experiments and Analysis

Glance of Approximation Set Coding (ASC)

How to measure the robustness of these algorithms facing noise?

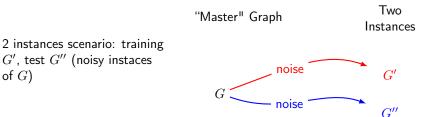
How to measure the robustness of these algorithms facing noise?

 ASC: an analogy to Shannon's communication theory learning procedure ⇔ communication process [Buhmann 2010]

Glance of Approximation Set Coding (ASC)

How to measure the robustness of these algorithms facing noise?

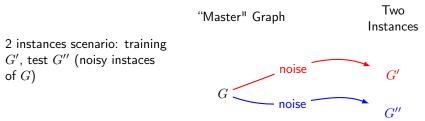
• ASC: an analogy to Shannon's communication theory learning procedure ⇔ communication process [Buhmann 2010]



Glance of Approximation Set Coding (ASC)

How to measure the robustness of these algorithms facing noise?

• ASC: an analogy to Shannon's communication theory learning procedure ⇔ communication process [Buhmann 2010]



• Models/algorithms should generalize well from G' to G''

• Empirical risk minimizer $c^{\perp}(G) := \arg \min_{c} R(c, G)$

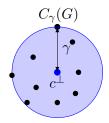
• Empirical risk minimizer $c^{\perp}(G) := \arg \min_{c} R(c, G)$ $c^{\perp}(G') \stackrel{\text{noise}}{\neq} c^{\perp}(G'')$

• Empirical risk minimizer $c^{\perp}(G) := \arg \min_{c} R(c, G)$ $c^{\perp}(G') \stackrel{\text{noise}}{\neq} c^{\perp}(G'')$

• γ -approximation set (solutions γ distant from c^{\perp}): $C_{\gamma}(G) := \{ c \in \mathcal{C} \mid R(c,G) - R(c^{\perp},G) \leq \gamma \}$ γ : resolution

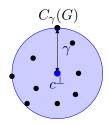
• Empirical risk minimizer $c^{\perp}(G) := \arg \min_{c} R(c, G)$ $c^{\perp}(G') \stackrel{\text{noise}}{\neq} c^{\perp}(G'')$

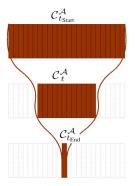
• γ -approximation set (solutions γ distant from c^{\perp}): $C_{\gamma}(G) := \{ c \in \mathcal{C} \mid R(c,G) - R(c^{\perp},G) \leq \gamma \}$ γ : resolution



• Empirical risk minimizer $c^{\perp}(G) := \arg \min_{c} R(c, G)$ $c^{\perp}(G') \stackrel{\text{noise}}{\neq} c^{\perp}(G'')$

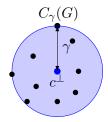
• γ -approximation set (solutions γ distant from c^{\perp}): $C_{\gamma}(G) := \{ c \in \mathcal{C} \mid R(c,G) - R(c^{\perp},G) \leq \gamma \}$ γ : resolution

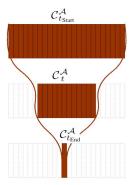




• Empirical risk minimizer $c^{\perp}(G) := \arg \min_{c} R(c, G)$ $c^{\perp}(G') \stackrel{\text{noise}}{\neq} c^{\perp}(G'')$

• γ -approximation set (solutions γ distant from c^{\perp}): $C_{\gamma}(G) := \{ c \in \mathcal{C} \mid R(c,G) - R(c^{\perp},G) \leq \gamma \}$ γ : resolution

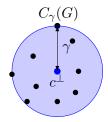


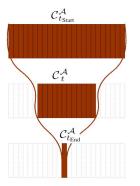


• Flow of *contractive* \mathscr{A} : sequence of the available solution sets in each step t

• Empirical risk minimizer $c^{\perp}(G) := \arg \min_{c} R(c, G)$ $c^{\perp}(G') \stackrel{\text{noise}}{\neq} c^{\perp}(G'')$

• γ -approximation set (solutions γ distant from c^{\perp}): $C_{\gamma}(G) := \{ c \in \mathcal{C} \mid R(c,G) - R(c^{\perp},G) \leq \gamma \}$ γ : resolution





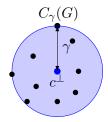
• Flow of *contractive* \mathscr{A} : sequence of the available solution sets in each step t

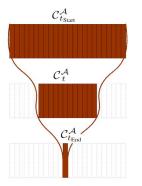
Algorithmic *t*-approximation set [Gronskiy and Buhmann 2014]:

 $C_t^{\mathscr{A}}(G)$

• Empirical risk minimizer $c^{\perp}(G) := \arg \min_{c} R(c, G)$ $c^{\perp}(G') \stackrel{\text{noise}}{\neq} c^{\perp}(G'')$

• γ -approximation set (solutions γ distant from c^{\perp}): $C_{\gamma}(G) := \{ c \in \mathcal{C} \mid R(c,G) - R(c^{\perp},G) \leq \gamma \}$ γ : resolution





• Flow of *contractive* \mathscr{A} : sequence of the available solution sets in each step t

Algorithmic *t*-approximation set [Gronskiy and Buhmann 2014]:

(Not going into detail here)

(Not going into detail here)

Analogical mutual information in step t

$$I_t^{\mathscr{A}} := \mathbb{E}_{G',G''} \left[\log \left(\frac{|\mathcal{C}| \cdot |\Delta C_t^{\mathscr{A}}(G',G'')|}{|C_t^{\mathscr{A}}(G')| \cdot |C_t^{\mathscr{A}}(G'')|} \right) \right]$$
$$\Delta C_t^{\mathscr{A}}(G',G'') = C_t^{\mathscr{A}}(G') \cap C_t^{\mathscr{A}}(G'')$$

(Not going into detail here)

Analogical mutual information in step t

$$I_t^{\mathscr{A}} := \mathbb{E}_{G',G''} \left[\log \left(\frac{|\mathcal{C}| \cdot |\Delta C_t^{\mathscr{A}}(G',G'')|}{|C_t^{\mathscr{A}}(G')| \cdot |C_t^{\mathscr{A}}(G'')|} \right) \right]$$
$$\Delta C_t^{\mathscr{A}}(G',G'') = C_t^{\mathscr{A}}(G') \cap C_t^{\mathscr{A}}(G'')$$

Information content of \mathscr{A}

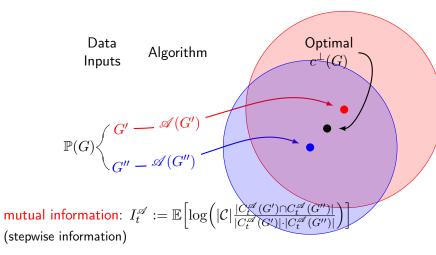
(Not going into detail here)

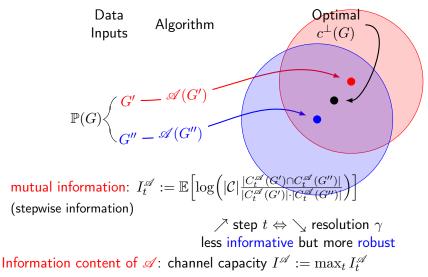
Analogical mutual information in step \boldsymbol{t}

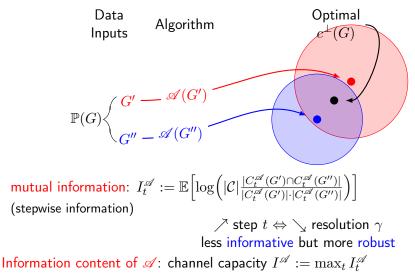
$$I_t^{\mathscr{A}} := \mathbb{E}_{G',G''} \left[\log \left(\frac{|\mathcal{C}| \cdot |\Delta C_t^{\mathscr{A}}(G',G'')|}{|C_t^{\mathscr{A}}(G')| \cdot |C_t^{\mathscr{A}}(G'')|} \right) \right]$$
$$\Delta C_t^{\mathscr{A}}(G',G'') = C_t^{\mathscr{A}}(G') \cap C_t^{\mathscr{A}}(G'')$$

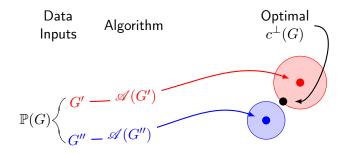
Information content of \mathscr{A}

channel capacity
$$I^{\mathscr{A}} := \max_t I_t^{\mathscr{A}}$$



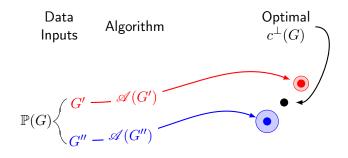






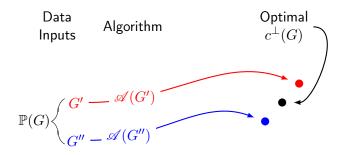
mutual information: $I_t^{\mathscr{A}} := \mathbb{E}\left[\log\left(|\mathcal{C}| \frac{|C_t^{\mathscr{A}}(G') \cap C_t^{\mathscr{A}}(G'')|}{|C_t^{\mathscr{A}}(G')| \cdot |C_t^{\mathscr{A}}(G'')|}\right)\right]$ (stepwise information) \nearrow step $t \Leftrightarrow \searrow$ resolution γ

less informative but more robust



mutual information: $I_t^{\mathscr{A}} := \mathbb{E}\left[\log\left(|\mathcal{C}| \frac{|C_t^{\mathscr{A}}(G') \cap C_t^{\mathscr{A}}(G'')|}{|C_t^{\mathscr{A}}(G')| \cdot |C_t^{\mathscr{A}}(G'')|}\right)\right]$ (stepwise information) \nearrow step $t \Leftrightarrow \searrow$ resolution γ

less informative but more robust



mutual information: $I_t^{\mathscr{A}} := \mathbb{E}\left[\log\left(|\mathcal{C}| \frac{|C_t^{\mathscr{A}}(G') \cap C_t^{\mathscr{A}}(G'')|}{|C_t^{\mathscr{A}}(G')| \cdot |C_t^{\mathscr{A}}(G'')|}\right)\right]$ (stepwise information) \nearrow step $t \Leftrightarrow \searrow$ resolution γ

less informative but more robust

Greedy MaxCut Algorithms

Approximation Set Coding (ASC)

Applying ASC: Count the Approximation Sets

Applying ASC: Experiments and Analysis

Counting – Double Greedy Algorithms

Counting methods similar for double greedy algorithms (D2Greedy, SG, SG3)

Counting – Double Greedy Algorithms

Counting methods similar for double greedy algorithms (D2Greedy, SG, SG3)

• SG3: assume k vertices unlabeled in step t, $|C_t^{\mathscr{A}}(G')| = |C_t^{\mathscr{A}}(G'')| = 2^k$ Counting methods similar for double greedy algorithms (D2Greedy, SG, SG3)

SG3: assume k vertices unlabeled in step t, |C^A_t(G')| = |C^A_t(G'')| = 2^k
|C^A_t(G') ∩ C^A_t(G'')| Counting methods similar for double greedy algorithms (D2Greedy, SG, SG3)

• SG3: assume k vertices unlabeled in step t, $|C_t^{\mathscr{A}}(G')| = |C_t^{\mathscr{A}}(G'')| = 2^k$ • $|C_t^{\mathscr{A}}(G') \cap C_t^{\mathscr{A}}(G'')|$

We propose (and prove correctness) polynomial time algorithm to count (not going in detail here): For the SG3 (Alg. 6, see Supplement), after step t ($t = 1, \dots, n-1$) there are k = n-t-1 unlabelled vertices, and it is clear that $|C(G')| = |C(G'')| = 2^k$.

To count the intersection set $\Delta(G', G'')$, assume the solution set pair of G' is (S'_1, S'_2) , the solution set pair of G'' is (S'_1, S'_2) , so the unlabelled vertex sets are $T' = V \setminus \{S_1 \cup S_2\}$, $T'' = V \setminus \{S'_1 \cup S'_2\}$, respectively. Denote $L := T' \cap T''$ be the common vertices of the two unlabelled vertex sets, so $l = |L| \ (0 \le l \le k)$ is the number of common vertices in the unlabelled k vertices. Denote $M' := T' \setminus L, M'' := T'' \setminus L$ be the sets of different vertex sets between the two unlabelled vertex sets. Then,

$$\Delta(G',G'') = \begin{cases} 2^l & \text{if } (S_1'' \backslash M',S_2'' \backslash M') \text{ is matched by} \\ (S_1' \backslash M'',S_2' \backslash M'') \text{ or } (S_2' \backslash M'',S_1' \backslash M'') \\ 0 & \text{otherwise} \end{cases}$$

• In step t, there are k "super" vertices, get $|C^{\mathscr{A}}_t(G')| = |C^{\mathscr{A}}_t(G'')| = 2^{k-1} - 1$

• In step t, there are k "super" vertices, get $|C^{\mathscr{A}}_t(G^{'})| = |C^{\mathscr{A}}_t(G^{''})| = 2^{k-1} - 1$

• We propose polynomial time algorithm (and prove correctness) to exactly count $|C_t^{\mathscr{A}}(G') \cap C_t^{\mathscr{A}}(G'')|$

• In step t, there are k "super" vertices, get $|C_t^{\mathscr{A}}(G')| = |C_t^{\mathscr{A}}(G'')| = 2^{k-1} - 1$

• We propose polynomial time algorithm (and prove correctness) to exactly count $|C_t^{\mathscr{A}}(G') \cap C_t^{\mathscr{A}}(G'')|$

Algorithm 3: Common Super Vertex Counting
<u> </u>
Input: Two distinct super vertex sets P, Q
Output: Maximum number of common super vertices after all
possible contractions
$1 \ c := 0;$
2 while $P \neq \emptyset$ do
3 Randomly pick $p_i \in P$;
4 Find $\mathbf{q}_i \in Q$ s.t. $\mathbf{p}_i \cap \mathbf{q}_i \neq \emptyset$;
5 if $\mathbf{q}_i \setminus \mathbf{p}_i \neq \emptyset$ then
6 For \mathbf{p}_i , find $\mathbf{p}_{i'} \in P \setminus \{\mathbf{p}_i\}$ s.t. $\mathbf{p}_{i'} \cap (\mathbf{q}_j \setminus \mathbf{p}_i) \neq \emptyset$;
7 $\mathbf{p}_{\mathbf{i}\mathbf{i}'} := \mathbf{p}_i \cup \mathbf{p}_{i'}, P := P \cup \{\mathbf{p}_{\mathbf{i}\mathbf{i}'}\} \setminus \{\mathbf{p}_i, \mathbf{p}_{i'}\};$
s if $\mathbf{p}_i \setminus \mathbf{q}_i \neq \emptyset$ then
9 For \mathbf{q}_i , find $\mathbf{q}_{i'} \in Q \setminus \{\mathbf{q}_i\}$ s.t. $\mathbf{q}_{i'} \cap (\mathbf{p}_i \setminus \mathbf{q}_i) \neq \emptyset$;
9 10 For \mathbf{q}_j , find $\mathbf{q}_{j'} \in Q \setminus \{\mathbf{q}_j\}$ s.t. $\mathbf{q}_{j'} \cap (\mathbf{p}_i \setminus \mathbf{q}_j) \neq \emptyset$; $\mathbf{q}_{\mathbf{i}\mathbf{j}'} := \mathbf{q}_j \cup \mathbf{q}_{j'}, Q := Q \cup \{\mathbf{q}_{\mathbf{i}\mathbf{j}'}\} \setminus \{\mathbf{q}_j, \mathbf{q}_{j'}\}$;
11 if $\mathbf{p}_{ii'} == \mathbf{q}_{ii'}$ then
12 Remove $\mathbf{p}_{ii'}$, $\mathbf{q}_{ii'}$ from P, Q, respectively;
$\begin{array}{c c} & & P_{II'} - Q_{II'} \text{ lift} \\ \hline Remove p_{II'}, Q_{II'} \text{ from } P, Q, \text{ respectively;} \\ c := c + 1; \\ \end{array}$
14 return <u>c</u>

```
• In step t, there are k "super"
vertices, get
|C_t^{\mathscr{A}}(G')| = |C_t^{\mathscr{A}}(G'')| = 2^{k-1} - 1
```

- We propose polynomial time algorithm (and prove correctness) to exactly count $|C_t^{\mathscr{A}}(G') \cap C_t^{\mathscr{A}}(G'')|$
- Involves calculating max. number of common super vertices between 2 super vertex sets (details in the paper)

	nput : Two distinct super vertex sets P, Q
0	utput: Maximum number of common super vertices after all
	possible contractions
1 C	:= 0;
2 W	hile $P \neq \emptyset$ do
3	Randomly pick $p_i \in P$;
4	Find $\mathbf{q}_j \in Q$ s.t. $\mathbf{p}_i \cap \mathbf{q}_j \neq \emptyset$;
5	if $\mathbf{q}_j \setminus \mathbf{p}_i \neq \emptyset$ then
6	For \mathbf{p}_i , find $\mathbf{p}_{i'} \in P \setminus \{\mathbf{p}_i\}$ s.t. $\mathbf{p}_{i'} \cap (\mathbf{q}_j \setminus \mathbf{p}_i) \neq \emptyset$;
7	$\mathbf{p}_{\mathbf{i}\mathbf{i}'} := \mathbf{p}_i \cup \mathbf{p}_{i'}, P := P \cup \{\mathbf{p}_{\mathbf{i}\mathbf{i}'}\} \setminus \{\mathbf{p}_i, \mathbf{p}_{i'}\};$
8	if $\mathbf{p}_i \setminus \mathbf{q}_i \neq \emptyset$ then
9	For \mathbf{q}_j , find $\mathbf{q}_{i'} \in Q \setminus \{\mathbf{q}_i\}$ s.t. $\mathbf{q}_{i'} \cap (\mathbf{p}_i \setminus \mathbf{q}_j) \neq \emptyset$;
10	$\mathbf{q}_{\mathbf{j}\mathbf{j}'} := \mathbf{q}_j \cup \widetilde{\mathbf{q}}_{j'}, \ Q := \widetilde{Q} \cup \{\mathbf{q}_{\mathbf{j}\mathbf{j}'}\} \setminus \{\mathbf{q}_j, \mathbf{q}_{j'}\};$
11	if $\mathbf{p}_{\mathbf{i}\mathbf{i}'} == \mathbf{q}_{\mathbf{i}\mathbf{i}'}$ then
12	Remove $\mathbf{p}_{ii'}$, $\mathbf{q}_{ii'}$ from P, Q, respectively;
13	c := c + 1;

• In step t, there are k "super" vertices, get $|C_t^{\mathscr{A}}(G')| = |C_t^{\mathscr{A}}(G'')| = 2^{k-1} - 1$

- We propose polynomial time algorithm (and prove correctness) to exactly count $|C_t^{\mathscr{A}}(G') \cap C_t^{\mathscr{A}}(G'')|$
- Involves calculating max. number of common super vertices between 2 super vertex sets (details in the paper)

Al	gorithm 3: Common Super Vertex Counting
	nput : Two distinct super vertex sets P, Q
0	Output: Maximum number of common super vertices after all
	possible contractions
	:= 0;
2 W	hile $\underline{P \neq \emptyset}$ do
3	Randomly pick $p_i \in P$;
4	Find $q_j \in Q$ s.t. $p_i \cap q_j \neq \emptyset$;
5	if $\mathbf{q}_j \setminus \mathbf{p}_i \neq \emptyset$ then
6	For \mathbf{p}_i , find $\mathbf{p}_{i'} \in P \setminus \{\mathbf{p}_i\}$ s.t. $\mathbf{p}_{i'} \cap (\mathbf{q}_j \setminus \mathbf{p}_i) \neq \emptyset$;
7	$\mathbf{p}_{\mathbf{i}\mathbf{i}'} := \mathbf{p}_i \cup \mathbf{p}_{i'}, \ P := P \cup \{\mathbf{p}_{\mathbf{i}\mathbf{i}'}\} \setminus \{\mathbf{p}_i, \mathbf{p}_{i'}\} \ ;$
8	if $\mathbf{p}_i \setminus \mathbf{q}_i \neq \emptyset$ then
9	For \mathbf{q}_i , find $\mathbf{q}_{i'} \in Q \setminus \{\mathbf{q}_i\}$ s.t. $\mathbf{q}_{i'} \cap (\mathbf{p}_i \setminus \mathbf{q}_i) \neq \emptyset$;
10	
11	if $\mathbf{p}_{\mathbf{i}\mathbf{i}'} == \mathbf{q}_{\mathbf{i}\mathbf{i}'}$ then
12	Remove $\mathbf{p}_{ii'}$, $\mathbf{q}_{ii'}$ from P, Q, respectively;
13	c := c + 1;
14 F	eturn c

Theorem 1. Given two distinct super vertex sets $P := \{p_1, p_2, \cdots, p_h\}$. $Q := \{q_1, q_2, \cdots, q_h\}$ (any 2 super vertices inside P or Q do not intersect, and there is no common super vertex between P and Q, such that $p_1 \cup p_2 \cup \cdots \cup p_h = q_1 \cup q_2 \cup \cdots \cup q_h$. Alg. 3 returns the maximum number of common super vertices between P and Q after all possible contractions.

Greedy MaxCut Algorithms

Approximation Set Coding (ASC)

Applying ASC: Count the Approximation Sets

Applying ASC: Experiments and Analysis

$\begin{array}{l} \mbox{Master Graph } G \\ \mbox{Gaussian distributed edge weights:} \end{array}$

$$W_{ij} \sim N(\mu, \sigma_m^2), \mu = 600, \sigma_m = 50$$

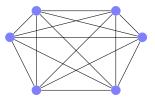
Negative edges are set to be μ .

Noise Model: Gaussian Edge Weights

 $\begin{array}{l} \textbf{Master Graph } G \\ \textbf{Gaussian distributed edge weights:} \end{array}$

$$W_{ij} \sim N(\mu, \sigma_m^2), \mu = 600, \sigma_m = 50$$

Negative edges are set to be μ .



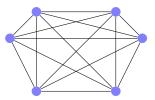
Master graph G with Gaussian weights

Noise Model: Gaussian Edge Weights

 $\begin{array}{l} \textbf{Master Graph } G \\ \textbf{Gaussian distributed edge weights:} \end{array}$

 $W_{ij} \sim N(\mu, \sigma_m^2), \mu = 600, \sigma_m = 50$

Negative edges are set to be μ .



Master graph G with Gaussian weights

Noisy Graphs G', G''G', G'' are obtained by adding Gaussian distributed noise. Negative edges are set to be 0. $\textbf{Master Graph}\ G$

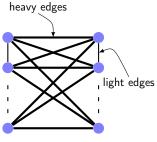
Master Graph G

1. approximate bipartite G_b' : light edges, heavy edges

Noise Model: Edge Reversal

Master Graph G

1. approximate bipartite G'_b : light edges, heavy edges

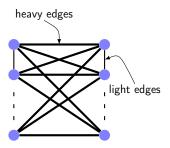


 $\begin{array}{c} \textbf{Approximate bipartite} \\ \text{graph } G_b' \end{array}$

Noise Model: Edge Reversal

Master Graph G

- approximate bipartite G'_b: light edges, heavy edges
- 2. randomly flip edges in $G'_b \Rightarrow G$, flipping: heavy (light) \Rightarrow light (heavy) (flip e_{ij}) \sim Ber (p_m) ; $p_m = 0.2$

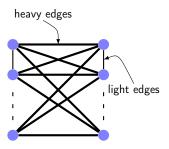


 $\begin{array}{c} \textbf{Approximate bipartite} \\ \text{graph } G_b' \end{array}$

Noise Model: Edge Reversal

Master Graph G

- approximate bipartite G'_b: light edges, heavy edges
- 2. randomly flip edges in $G'_b \Rightarrow G$, flipping: heavy (light) \Rightarrow light (heavy) (flip e_{ij}) \sim Ber (p_m) ; $p_m = 0.2$



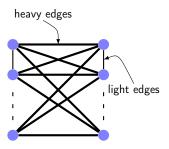
 $\begin{array}{c} \textbf{Approximate bipartite} \\ \text{graph } G_b' \end{array}$

Noisy Graphs G', G''

Noise Model: Edge Reversal

Master Graph G

- approximate bipartite G'_b: light edges, heavy edges
- 2. randomly flip edges in $G'_b \Rightarrow G$, flipping: heavy (light) \Rightarrow light (heavy) (flip e_{ij}) \sim Ber (p_m) ; $p_m = 0.2$



 $\begin{array}{c} \textbf{Approximate bipartite} \\ \text{graph } G_b' \end{array}$

Noisy Graphs G', G''

• Flip $G \Rightarrow G'$ and G''.

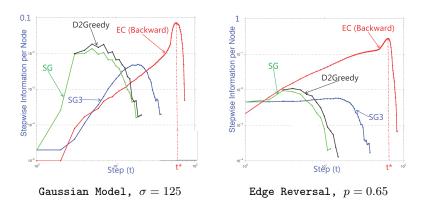
Probability of flipping an edge: Bernoulli distribution with p,

(flip e_{ij}) ~ Ber(p)

p: noise level

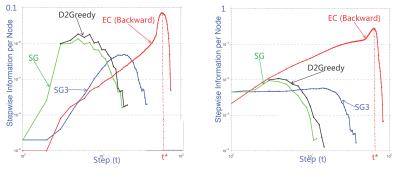
Stepwise Information $I_t^{\mathscr{A}}$

 $I_t^{\mathscr{A}} := \mathbb{E}_{G',G''} \left[\log \left(\frac{|\mathcal{C}| \cdot |\Delta C_t^{\mathscr{A}}(G',G'')|}{|C_t^{\mathscr{A}}(G')| \cdot |C_t^{\mathscr{A}}(G'')|} \right) \right]$



Stepwise Information $I_t^{\mathscr{A}}$

 $I_t^{\mathscr{A}} := \mathbb{E}_{G',G''} \left[\log \left(\frac{|\mathcal{C}| \cdot |\Delta C_t^{\mathscr{A}}(G',G'')|}{|C_t^{\mathscr{A}}(G')| \cdot |C_t^{\mathscr{A}}(G'')|} \right) \right]$



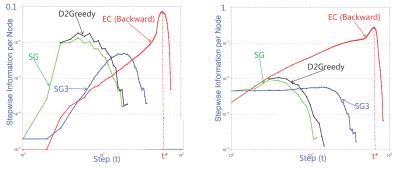
Gaussian Model, $\sigma = 125$

Edge Reversal, p=0.65

• $I_t^{\mathscr{A}}$ behavior: increase initially \Rightarrow reach the optimal step $t^* \Rightarrow$ decreases \Rightarrow vanishes.

Stepwise Information $I_t^{\mathscr{A}}$

$$I_t^{\mathscr{A}} := \mathbb{E}_{G',G''} \left[\log \left(\frac{|\mathcal{C}| \cdot |\Delta C_t^{\mathscr{A}}(G',G'')|}{|C_t^{\mathscr{A}}(G')| \cdot |C_t^{\mathscr{A}}(G'')|} \right) \right]$$



Gaussian Model, $\sigma = 125$

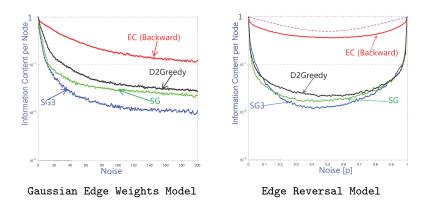
Edge Reversal, p=0.65

• $I_t^{\mathscr{A}}$ behavior: increase initially \Rightarrow reach the optimal step $t^* \Rightarrow$ decreases \Rightarrow vanishes.

 \bullet consistent with analysis: $\nearrow t \Rightarrow$ tradeoff of roubstness and informativeness

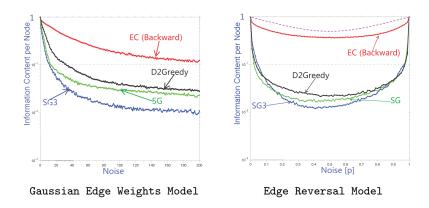
Information Content $I^{\mathscr{A}}$

 $I^{\mathscr{A}} := \max_{t} I_{t}^{\mathscr{A}}$ (channel capacity)



Information Content $I^{\mathscr{A}}$

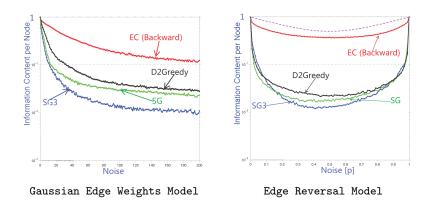
 $I^{\mathscr{A}} := \max_{t} I_{t}^{\mathscr{A}}$ (channel capacity)



• All reach max. information content in the noise free limit (G' = G'') $(p = 0, 1 \text{ in edge reversal model}, \sigma = 0 \text{ in Gaussian model})$

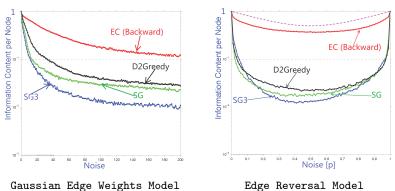
Information Content $I^{\mathscr{A}}$

 $I^{\mathscr{A}} := \max_{t} I_{t}^{\mathscr{A}}$ (channel capacity)



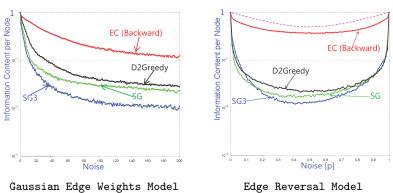
• All reach max. information content in the noise free limit (G' = G'') $(p = 0, 1 \text{ in edge reversal model}, \sigma = 0 \text{ in Gaussian model})$ • 1 node transmits about 1 bit information

Effect of Greedy Heuristics



Backward greedy \succ double greedy

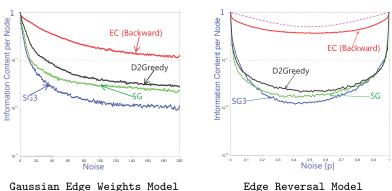
Effect of Greedy Heuristics



Backward greedy \succcurlyeq double greedy

• Delayed decision making of backward greedy

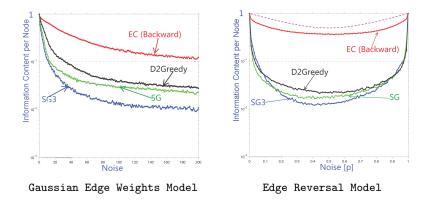
Effect of Greedy Heuristics



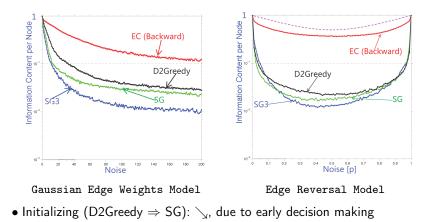
$\mathsf{Backward}\ \mathsf{greedy}\ \succcurlyeq\ \mathsf{double}\ \mathsf{greedy}$

- Delayed decision making of backward greedy
- EC preserves consistent solutions by contracting lightest edge (having low probability to be included in the cut)

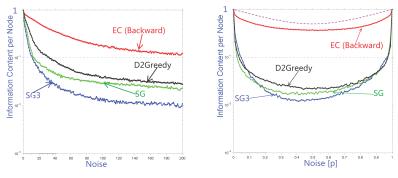
Effect of Greedy Techniques

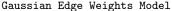


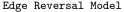
Effect of Greedy Techniques



Effect of Greedy Techniques







- Initializing (D2Greedy \Rightarrow SG): \searrow , due to early decision making
- Sorting candidates (SG \Rightarrow SG3): \searrow , due to early decision making

Observation:

Different greedy heuristics (backward, double) and different processing techniques (sorting candidates, initializing the first 2 vertices) sensitively influence the information content of \mathscr{A} .

Observation:

Different greedy heuristics (backward, double) and different processing techniques (sorting candidates, initializing the first 2 vertices) sensitively influence the information content of \mathscr{A} .

Conjecture:

Backward greedy \succeq delayed decision making double greedy for different noise models and noise levels.

Thank you!

Qs?

Imaginary communication system:

- message: permutations $\sigma_s \in \Sigma$ on the data space
- encoder: encoding σ_s using $C_t^{\mathscr{A}}(\sigma_s \circ G')$ (codebook vector)
- channel: noisy instances G', G''
- decoder: max. overlap of approx. sets: $\hat{\sigma} := \arg \max_{\sigma \in \Sigma} |C_t^{\mathscr{A}}(\sigma \circ G'') \cap C_t^{\mathscr{A}}(\sigma_s \circ G')|$

Analogical mutual information in step t

$$I_t^{\mathscr{A}}(\sigma_s; \hat{\sigma}) := \mathbb{E}_{G', G''} \left[\log \left(|\mathcal{C}| \frac{|C_t^{\mathscr{A}}(G') \cap C_t^{\mathscr{A}}(G'')|}{|C_t^{\mathscr{A}}(G')| \cdot |C_t^{\mathscr{A}}(G'')|} \right) \right]$$

channel capacity $I^{\mathscr{A}}:=\max_{t}I_{t}^{\mathscr{A}}$ (Information content of \mathscr{A})