
Greedy MaxCut Algorithms and
their Information Content

Yatao Bian, Alexey Gronskiy and Joachim M. Buhmann

Machine Learning Institute, ETH Zurich

April 27, 2015

1 / 19

Contents

Greedy MaxCut Algorithms

Approximation Set Coding (ASC)

Applying ASC: Count the Approximation Sets

Applying ASC: Experiments and Analysis

2 / 19

Contents

Greedy MaxCut Algorithms

Approximation Set Coding (ASC)

Applying ASC: Count the Approximation Sets

Applying ASC: Experiments and Analysis

2 / 19

MaxCut

MaxCut: classical NP-hard problem

• G = (V,E), vertex set V , edge set E, weights wij ≥ 0
• CUT c := (S, V \S), cut space C (|C| = 2n−1 − 1)
• Cut value: cut(c,G) :=

∑
i∈S,j∈V \S wij

max
cut:­)

x y

z

1

32

5=2+3

3 / 19

MaxCut

MaxCut: classical NP-hard problem
• G = (V,E), vertex set V , edge set E, weights wij ≥ 0

• CUT c := (S, V \S), cut space C (|C| = 2n−1 − 1)
• Cut value: cut(c,G) :=

∑
i∈S,j∈V \S wij

x y

z

1

32

3=1+2
cut

value

max
cut:­)

x y

z

1

32

5=2+3

3 / 19

MaxCut

MaxCut: classical NP-hard problem
• G = (V,E), vertex set V , edge set E, weights wij ≥ 0
• CUT c := (S, V \S), cut space C (|C| = 2n−1 − 1)

• Cut value: cut(c,G) :=
∑

i∈S,j∈V \S wij

x y

z

1

32

3=1+2
cut

value

max
cut:­)

x y

z

1

32

5=2+3

3 / 19

MaxCut

MaxCut: classical NP-hard problem
• G = (V,E), vertex set V , edge set E, weights wij ≥ 0
• CUT c := (S, V \S), cut space C (|C| = 2n−1 − 1)
• Cut value: cut(c,G) :=

∑
i∈S,j∈V \S wij

x y

z

1

32

3=1+2
cut

value

max
cut:­)

x y

z

1

32

5=2+3

3 / 19

MaxCut

MaxCut: classical NP-hard problem
• G = (V,E), vertex set V , edge set E, weights wij ≥ 0
• CUT c := (S, V \S), cut space C (|C| = 2n−1 − 1)
• Cut value: cut(c,G) :=

∑
i∈S,j∈V \S wij

x y

z

1

32

3=1+2
cut

value
max
cut:­)

x y

z

1

32

5=2+3

3 / 19

Greedy Algorithms for MaxCut

Name
Greedy Techniques
Heuristic Sorting Init. Vertices

Deterministic Double Greedy
DoubleSG (Sahni & Gonzales) X

SG3 (variant of SG) X X
Edge Contraction (EC) Backward X

4 / 19

Double Greedy Taxonomy

Deterministic Double Greedy (D2Greedy)

Require: graph G = (V,E)
Ensure: cut and the cut value
1: init. 2 solutions S := ∅, T := V

//in random order
2: for each vertex vi ∈ V do
3: ai := gain of adding vi to S
4: bi := gain of removing vi from T
5: if ai ≥ bi then
6: add vi to S
7: else
8: remove vi from T
9: end if

10: end for
11: return cut: (S, V \S), cut value

• works on 2 solutions
simultaneously

• for each vertex, decides
whether it should be
added to S, or removed
from T

Differences between the double greedy algorithms:

D2Greedy → select the first 2 vertices → SG
SG → sort the candidates → SG3

5 / 19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V,E)
Ensure: cut and the cut value
1: init. 2 solutions S := ∅, T := V

//in random order
2: for each vertex vi ∈ V do
3: ai := gain of adding vi to S
4: bi := gain of removing vi from T
5: if ai ≥ bi then
6: add vi to S
7: else
8: remove vi from T
9: end if

10: end for
11: return cut: (S, V \S), cut value

• works on 2 solutions
simultaneously

• for each vertex, decides
whether it should be
added to S, or removed
from T

Differences between the double greedy algorithms:

D2Greedy → select the first 2 vertices → SG
SG → sort the candidates → SG3

5 / 19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V,E)
Ensure: cut and the cut value

1: init. 2 solutions S := ∅, T := V
//in random order

2: for each vertex vi ∈ V do
3: ai := gain of adding vi to S
4: bi := gain of removing vi from T
5: if ai ≥ bi then
6: add vi to S
7: else
8: remove vi from T
9: end if

10: end for
11: return cut: (S, V \S), cut value

• works on 2 solutions
simultaneously

• for each vertex, decides
whether it should be
added to S, or removed
from T

Differences between the double greedy algorithms:

D2Greedy → select the first 2 vertices → SG
SG → sort the candidates → SG3

5 / 19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V,E)
Ensure: cut and the cut value
1: init. 2 solutions S := ∅, T := V

//in random order
2: for each vertex vi ∈ V do
3: ai := gain of adding vi to S
4: bi := gain of removing vi from T
5: if ai ≥ bi then
6: add vi to S
7: else
8: remove vi from T
9: end if

10: end for
11: return cut: (S, V \S), cut value

• works on 2 solutions
simultaneously

• for each vertex, decides
whether it should be
added to S, or removed
from T

Differences between the double greedy algorithms:

D2Greedy → select the first 2 vertices → SG
SG → sort the candidates → SG3

5 / 19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V,E)
Ensure: cut and the cut value
1: init. 2 solutions S := ∅, T := V

//in random order
2: for each vertex vi ∈ V do

3: ai := gain of adding vi to S
4: bi := gain of removing vi from T
5: if ai ≥ bi then
6: add vi to S
7: else
8: remove vi from T
9: end if

10: end for

11: return cut: (S, V \S), cut value

• works on 2 solutions
simultaneously

• for each vertex, decides
whether it should be
added to S, or removed
from T

Differences between the double greedy algorithms:

D2Greedy → select the first 2 vertices → SG
SG → sort the candidates → SG3

5 / 19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V,E)
Ensure: cut and the cut value
1: init. 2 solutions S := ∅, T := V

//in random order
2: for each vertex vi ∈ V do
3: ai := gain of adding vi to S
4: bi := gain of removing vi from T

5: if ai ≥ bi then
6: add vi to S
7: else
8: remove vi from T
9: end if

10: end for

11: return cut: (S, V \S), cut value

• works on 2 solutions
simultaneously

• for each vertex, decides
whether it should be
added to S, or removed
from T

Differences between the double greedy algorithms:

D2Greedy → select the first 2 vertices → SG
SG → sort the candidates → SG3

5 / 19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V,E)
Ensure: cut and the cut value
1: init. 2 solutions S := ∅, T := V

//in random order
2: for each vertex vi ∈ V do
3: ai := gain of adding vi to S
4: bi := gain of removing vi from T
5: if ai ≥ bi then
6: add vi to S
7: else
8: remove vi from T
9: end if

10: end for

11: return cut: (S, V \S), cut value

• works on 2 solutions
simultaneously

• for each vertex, decides
whether it should be
added to S, or removed
from T

Differences between the double greedy algorithms:

D2Greedy → select the first 2 vertices → SG
SG → sort the candidates → SG3

5 / 19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V,E)
Ensure: cut and the cut value
1: init. 2 solutions S := ∅, T := V

//in random order
2: for each vertex vi ∈ V do
3: ai := gain of adding vi to S
4: bi := gain of removing vi from T
5: if ai ≥ bi then
6: add vi to S
7: else
8: remove vi from T
9: end if

10: end for
11: return cut: (S, V \S), cut value

• works on 2 solutions
simultaneously

• for each vertex, decides
whether it should be
added to S, or removed
from T

Differences between the double greedy algorithms:

D2Greedy → select the first 2 vertices → SG
SG → sort the candidates → SG3

5 / 19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V,E)
Ensure: cut and the cut value
1: init. 2 solutions S := ∅, T := V

//in random order
2: for each vertex vi ∈ V do
3: ai := gain of adding vi to S
4: bi := gain of removing vi from T
5: if ai ≥ bi then
6: add vi to S
7: else
8: remove vi from T
9: end if

10: end for
11: return cut: (S, V \S), cut value

• works on 2 solutions
simultaneously

• for each vertex, decides
whether it should be
added to S, or removed
from T

Differences between the double greedy algorithms:

D2Greedy → select the first 2 vertices → SG
SG → sort the candidates → SG3

5 / 19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V,E)
Ensure: cut and the cut value
1: init. 2 solutions S := ∅, T := V

//in random order
2: for each vertex vi ∈ V do
3: ai := gain of adding vi to S
4: bi := gain of removing vi from T
5: if ai ≥ bi then
6: add vi to S
7: else
8: remove vi from T
9: end if

10: end for
11: return cut: (S, V \S), cut value

• works on 2 solutions
simultaneously

• for each vertex, decides
whether it should be
added to S, or removed
from T

Differences between the double greedy algorithms:

D2Greedy → select the first 2 vertices → SG

SG → sort the candidates → SG3

5 / 19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V,E)
Ensure: cut and the cut value
1: init. 2 solutions S := ∅, T := V

//in random order
2: for each vertex vi ∈ V do
3: ai := gain of adding vi to S
4: bi := gain of removing vi from T
5: if ai ≥ bi then
6: add vi to S
7: else
8: remove vi from T
9: end if

10: end for
11: return cut: (S, V \S), cut value

• works on 2 solutions
simultaneously

• for each vertex, decides
whether it should be
added to S, or removed
from T

Differences between the double greedy algorithms:

D2Greedy → select the first 2 vertices → SG
SG → sort the candidates → SG3

5 / 19

Backward Greedy – Edge Contraction Algorithm

Edge Contraction (EC)

Require: graph G = (V,E)
Ensure: cut, cut value
1: repeat
2: find the lightest edge (x, y) in G
3: contract x, y to be a super vertex v
4: set the edge weights connecting v
5: until 2 “super" vertices left
6: return the 2 super vertices

• contract the lightest edge in
each step

x y

z

1

32

v

z

2+3 = 5

contraction

Backward greedy: EC tries to remove the lightest edge from the
cut set in each step

6 / 19

Backward Greedy – Edge Contraction Algorithm

Edge Contraction (EC)

Require: graph G = (V,E)
Ensure: cut, cut value
1: repeat
2: find the lightest edge (x, y) in G
3: contract x, y to be a super vertex v
4: set the edge weights connecting v
5: until 2 “super" vertices left
6: return the 2 super vertices

• contract the lightest edge in
each step

x y

z

1

32

v

z

2+3 = 5

contraction

Backward greedy: EC tries to remove the lightest edge from the
cut set in each step

6 / 19

Backward Greedy – Edge Contraction Algorithm

Edge Contraction (EC)

Require: graph G = (V,E)
Ensure: cut, cut value

1: repeat
2: find the lightest edge (x, y) in G
3: contract x, y to be a super vertex v
4: set the edge weights connecting v
5: until 2 “super" vertices left
6: return the 2 super vertices

• contract the lightest edge in
each step

x y

z

1

32

v

z

2+3 = 5

contraction

Backward greedy: EC tries to remove the lightest edge from the
cut set in each step

6 / 19

Backward Greedy – Edge Contraction Algorithm

Edge Contraction (EC)

Require: graph G = (V,E)
Ensure: cut, cut value
1: repeat

2: find the lightest edge (x, y) in G
3: contract x, y to be a super vertex v
4: set the edge weights connecting v

5: until 2 “super" vertices left

6: return the 2 super vertices

• contract the lightest edge in
each step

x y

z

1

32

v

z

2+3 = 5

contraction

Backward greedy: EC tries to remove the lightest edge from the
cut set in each step

6 / 19

Backward Greedy – Edge Contraction Algorithm

Edge Contraction (EC)

Require: graph G = (V,E)
Ensure: cut, cut value
1: repeat

2: find the lightest edge (x, y) in G
3: contract x, y to be a super vertex v
4: set the edge weights connecting v

5: until 2 “super" vertices left

6: return the 2 super vertices

• contract the lightest edge in
each step

x y

z

1

32

v

z

2+3 = 5

contraction

Backward greedy: EC tries to remove the lightest edge from the
cut set in each step

6 / 19

Backward Greedy – Edge Contraction Algorithm

Edge Contraction (EC)

Require: graph G = (V,E)
Ensure: cut, cut value
1: repeat

2: find the lightest edge (x, y) in G
3: contract x, y to be a super vertex v
4: set the edge weights connecting v

5: until 2 “super" vertices left

6: return the 2 super vertices

• contract the lightest edge in
each step

x y

z

1

32

v

z

2+3 = 5

contraction

Backward greedy: EC tries to remove the lightest edge from the
cut set in each step

6 / 19

Backward Greedy – Edge Contraction Algorithm

Edge Contraction (EC)

Require: graph G = (V,E)
Ensure: cut, cut value
1: repeat
2: find the lightest edge (x, y) in G

3: contract x, y to be a super vertex v
4: set the edge weights connecting v

5: until 2 “super" vertices left

6: return the 2 super vertices

• contract the lightest edge in
each step

x y

z

1

32

v

z

2+3 = 5

contraction

Backward greedy: EC tries to remove the lightest edge from the
cut set in each step

6 / 19

Backward Greedy – Edge Contraction Algorithm

Edge Contraction (EC)

Require: graph G = (V,E)
Ensure: cut, cut value
1: repeat
2: find the lightest edge (x, y) in G
3: contract x, y to be a super vertex v

4: set the edge weights connecting v

5: until 2 “super" vertices left

6: return the 2 super vertices

• contract the lightest edge in
each step

x y

z

1

32

v

z

2+3 = 5

contraction

Backward greedy: EC tries to remove the lightest edge from the
cut set in each step

6 / 19

Backward Greedy – Edge Contraction Algorithm

Edge Contraction (EC)

Require: graph G = (V,E)
Ensure: cut, cut value
1: repeat
2: find the lightest edge (x, y) in G
3: contract x, y to be a super vertex v
4: set the edge weights connecting v
5: until 2 “super" vertices left

6: return the 2 super vertices

• contract the lightest edge in
each step

x y

z

1

32

v

z

2+3 = 5

contraction

Backward greedy: EC tries to remove the lightest edge from the
cut set in each step

6 / 19

Backward Greedy – Edge Contraction Algorithm

Edge Contraction (EC)

Require: graph G = (V,E)
Ensure: cut, cut value
1: repeat
2: find the lightest edge (x, y) in G
3: contract x, y to be a super vertex v
4: set the edge weights connecting v
5: until 2 “super" vertices left
6: return the 2 super vertices

• contract the lightest edge in
each step

x y

z

1

32

v

z

2+3 = 5

contraction

Backward greedy: EC tries to remove the lightest edge from the
cut set in each step

6 / 19

Backward Greedy – Edge Contraction Algorithm

Edge Contraction (EC)

Require: graph G = (V,E)
Ensure: cut, cut value
1: repeat
2: find the lightest edge (x, y) in G
3: contract x, y to be a super vertex v
4: set the edge weights connecting v
5: until 2 “super" vertices left
6: return the 2 super vertices

• contract the lightest edge in
each step

x y

z

1

32

v

z

2+3 = 5

contraction

Backward greedy: EC tries to remove the lightest edge from the
cut set in each step

6 / 19

Contents

Greedy MaxCut Algorithms

Approximation Set Coding (ASC)

Applying ASC: Count the Approximation Sets

Applying ASC: Experiments and Analysis

6 / 19

Glance of Approximation Set Coding (ASC)

How to measure the robustness of these algorithms facing noise?

• ASC: an analogy to Shannon’s communication theory
learning procedure ⇔ communication process [Buhmann 2010]

2 instances scenario: training
G′, test G′′ (noisy instaces
of G) G′

G′′
G

noise

noise

“Master" Graph Two
Instances

• Models/algorithms should generalize well from G′ to G′′

7 / 19

Glance of Approximation Set Coding (ASC)

How to measure the robustness of these algorithms facing noise?

• ASC: an analogy to Shannon’s communication theory
learning procedure ⇔ communication process [Buhmann 2010]

2 instances scenario: training
G′, test G′′ (noisy instaces
of G) G′

G′′
G

noise

noise

“Master" Graph Two
Instances

• Models/algorithms should generalize well from G′ to G′′

7 / 19

Glance of Approximation Set Coding (ASC)

How to measure the robustness of these algorithms facing noise?

• ASC: an analogy to Shannon’s communication theory
learning procedure ⇔ communication process [Buhmann 2010]

2 instances scenario: training
G′, test G′′ (noisy instaces
of G) G′

G′′
G

noise

noise

“Master" Graph Two
Instances

• Models/algorithms should generalize well from G′ to G′′

7 / 19

Glance of Approximation Set Coding (ASC)

How to measure the robustness of these algorithms facing noise?

• ASC: an analogy to Shannon’s communication theory
learning procedure ⇔ communication process [Buhmann 2010]

2 instances scenario: training
G′, test G′′ (noisy instaces
of G) G′

G′′
G

noise

noise

“Master" Graph Two
Instances

• Models/algorithms should generalize well from G′ to G′′

7 / 19

Approximate Solving and Algorithmic Approx. Set

• Empirical risk minimizer
c⊥(G) := arg mincR(c,G)

c⊥(G′)
noise
6= c⊥(G′′)

• γ-approximation set (solutions γ distant from
c⊥): Cγ(G) :=

{
c ∈ C

∣∣ R(c,G)−R(c⊥, G) ≤ γ
}

γ: resolution

Cγ(G)

c⊥

γ

• Flow of contractive A : sequence of the
available solution sets in each step t

Algorithmic t-approximation set [Gronskiy and
Buhmann 2014]:

CA
t (G)

↗ step t ⇔ ↘ resolution γ

8 / 19

Approximate Solving and Algorithmic Approx. Set

• Empirical risk minimizer
c⊥(G) := arg mincR(c,G)

c⊥(G′)
noise
6= c⊥(G′′)

• γ-approximation set (solutions γ distant from
c⊥): Cγ(G) :=

{
c ∈ C

∣∣ R(c,G)−R(c⊥, G) ≤ γ
}

γ: resolution

Cγ(G)

c⊥

γ

• Flow of contractive A : sequence of the
available solution sets in each step t

Algorithmic t-approximation set [Gronskiy and
Buhmann 2014]:

CA
t (G)

↗ step t ⇔ ↘ resolution γ

8 / 19

Approximate Solving and Algorithmic Approx. Set

• Empirical risk minimizer
c⊥(G) := arg mincR(c,G)

c⊥(G′)
noise
6= c⊥(G′′)

• γ-approximation set (solutions γ distant from
c⊥): Cγ(G) :=

{
c ∈ C

∣∣ R(c,G)−R(c⊥, G) ≤ γ
}

γ: resolution

Cγ(G)

c⊥

γ

• Flow of contractive A : sequence of the
available solution sets in each step t

Algorithmic t-approximation set [Gronskiy and
Buhmann 2014]:

CA
t (G)

↗ step t ⇔ ↘ resolution γ

8 / 19

Approximate Solving and Algorithmic Approx. Set

• Empirical risk minimizer
c⊥(G) := arg mincR(c,G)

c⊥(G′)
noise
6= c⊥(G′′)

• γ-approximation set (solutions γ distant from
c⊥): Cγ(G) :=

{
c ∈ C

∣∣ R(c,G)−R(c⊥, G) ≤ γ
}

γ: resolution

Cγ(G)

c⊥

γ

• Flow of contractive A : sequence of the
available solution sets in each step t

Algorithmic t-approximation set [Gronskiy and
Buhmann 2014]:

CA
t (G)

↗ step t ⇔ ↘ resolution γ

8 / 19

Approximate Solving and Algorithmic Approx. Set

• Empirical risk minimizer
c⊥(G) := arg mincR(c,G)

c⊥(G′)
noise
6= c⊥(G′′)

• γ-approximation set (solutions γ distant from
c⊥): Cγ(G) :=

{
c ∈ C

∣∣ R(c,G)−R(c⊥, G) ≤ γ
}

γ: resolution

Cγ(G)

c⊥

γ

• Flow of contractive A : sequence of the
available solution sets in each step t

Algorithmic t-approximation set [Gronskiy and
Buhmann 2014]:

CA
t (G)

↗ step t ⇔ ↘ resolution γ

8 / 19

Approximate Solving and Algorithmic Approx. Set

• Empirical risk minimizer
c⊥(G) := arg mincR(c,G)

c⊥(G′)
noise
6= c⊥(G′′)

• γ-approximation set (solutions γ distant from
c⊥): Cγ(G) :=

{
c ∈ C

∣∣ R(c,G)−R(c⊥, G) ≤ γ
}

γ: resolution

Cγ(G)

c⊥

γ

• Flow of contractive A : sequence of the
available solution sets in each step t

Algorithmic t-approximation set [Gronskiy and
Buhmann 2014]:

CA
t (G)

↗ step t ⇔ ↘ resolution γ

8 / 19

Approximate Solving and Algorithmic Approx. Set

• Empirical risk minimizer
c⊥(G) := arg mincR(c,G)

c⊥(G′)
noise
6= c⊥(G′′)

• γ-approximation set (solutions γ distant from
c⊥): Cγ(G) :=

{
c ∈ C

∣∣ R(c,G)−R(c⊥, G) ≤ γ
}

γ: resolution

Cγ(G)

c⊥

γ

• Flow of contractive A : sequence of the
available solution sets in each step t

Algorithmic t-approximation set [Gronskiy and
Buhmann 2014]:

CA
t (G)

↗ step t ⇔ ↘ resolution γ

8 / 19

Approximate Solving and Algorithmic Approx. Set

• Empirical risk minimizer
c⊥(G) := arg mincR(c,G)

c⊥(G′)
noise
6= c⊥(G′′)

• γ-approximation set (solutions γ distant from
c⊥): Cγ(G) :=

{
c ∈ C

∣∣ R(c,G)−R(c⊥, G) ≤ γ
}

γ: resolution

Cγ(G)

c⊥

γ

• Flow of contractive A : sequence of the
available solution sets in each step t

Algorithmic t-approximation set [Gronskiy and
Buhmann 2014]:

CA
t (G)

↗ step t ⇔ ↘ resolution γ
8 / 19

Analogy of Communication System

(Not going into detail here)

Analogical mutual information in step t

IA
t := EG′,G′′

[
log
(
|C|·|∆CA

t (G′,G′′)|
|CA

t (G′)|·|CA
t (G′′)|

)]
∆CA

t (G′, G′′) = CA
t (G′) ∩ CA

t (G′′)

Information content of A

channel capacity IA := maxt I
A
t

9 / 19

Analogy of Communication System

(Not going into detail here)

Analogical mutual information in step t

IA
t := EG′,G′′

[
log
(
|C|·|∆CA

t (G′,G′′)|
|CA

t (G′)|·|CA
t (G′′)|

)]
∆CA

t (G′, G′′) = CA
t (G′) ∩ CA

t (G′′)

Information content of A

channel capacity IA := maxt I
A
t

9 / 19

Analogy of Communication System

(Not going into detail here)

Analogical mutual information in step t

IA
t := EG′,G′′

[
log
(
|C|·|∆CA

t (G′,G′′)|
|CA

t (G′)|·|CA
t (G′′)|

)]
∆CA

t (G′, G′′) = CA
t (G′) ∩ CA

t (G′′)

Information content of A

channel capacity IA := maxt I
A
t

9 / 19

Analogy of Communication System

(Not going into detail here)

Analogical mutual information in step t

IA
t := EG′,G′′

[
log
(
|C|·|∆CA

t (G′,G′′)|
|CA

t (G′)|·|CA
t (G′′)|

)]
∆CA

t (G′, G′′) = CA
t (G′) ∩ CA

t (G′′)

Information content of A

channel capacity IA := maxt I
A
t

9 / 19

Analogy of Communication System

(Not going into detail here)

Analogical mutual information in step t

IA
t := EG′,G′′

[
log
(
|C|·|∆CA

t (G′,G′′)|
|CA

t (G′)|·|CA
t (G′′)|

)]
∆CA

t (G′, G′′) = CA
t (G′) ∩ CA

t (G′′)

Information content of A

channel capacity IA := maxt I
A
t

9 / 19

Information Content of an Algorithm A

G′

G′′
P(G)

A (G′)

A (G′′)

Data
Inputs Algorithm

Optimal
c⊥(G)

mutual information: IA
t := E

[
log
(
|C| |C

A
t (G′)∩CA

t (G′′)|
|CA

t (G′)|·|CA
t (G′′)|

)]
(stepwise information)

Information content of A : channel capacity IA := maxt I
A
t

10 / 19

Information Content of an Algorithm A

G′

G′′
P(G)

A (G′)

A (G′′)

Data
Inputs Algorithm

Optimal
c⊥(G)

mutual information: IA
t := E

[
log
(
|C| |C

A
t (G′)∩CA

t (G′′)|
|CA

t (G′)|·|CA
t (G′′)|

)]
(stepwise information)

↗ step t ⇔ ↘ resolution γ
less informative but more robust

Information content of A : channel capacity IA := maxt I
A
t

10 / 19

Information Content of an Algorithm A

G′

G′′
P(G)

A (G′)

A (G′′)

Data
Inputs Algorithm

Optimal
c⊥(G)

mutual information: IA
t := E

[
log
(
|C| |C

A
t (G′)∩CA

t (G′′)|
|CA

t (G′)|·|CA
t (G′′)|

)]
(stepwise information)

↗ step t ⇔ ↘ resolution γ
less informative but more robust

Information content of A : channel capacity IA := maxt I
A
t

10 / 19

Information Content of an Algorithm A

G′

G′′
P(G)

A (G′)

A (G′′)

Data
Inputs Algorithm

Optimal
c⊥(G)

mutual information: IA
t := E

[
log
(
|C| |C

A
t (G′)∩CA

t (G′′)|
|CA

t (G′)|·|CA
t (G′′)|

)]
(stepwise information)

↗ step t ⇔ ↘ resolution γ
less informative but more robust

Information content of A : channel capacity IA := maxt I
A
t

10 / 19

Information Content of an Algorithm A

G′

G′′
P(G)

A (G′)

A (G′′)

Data
Inputs Algorithm

Optimal
c⊥(G)

mutual information: IA
t := E

[
log
(
|C| |C

A
t (G′)∩CA

t (G′′)|
|CA

t (G′)|·|CA
t (G′′)|

)]
(stepwise information)

↗ step t ⇔ ↘ resolution γ
less informative but more robust

Information content of A : channel capacity IA := maxt I
A
t

10 / 19

Information Content of an Algorithm A

G′

G′′
P(G)

A (G′)

A (G′′)

Data
Inputs Algorithm

Optimal
c⊥(G)

mutual information: IA
t := E

[
log
(
|C| |C

A
t (G′)∩CA

t (G′′)|
|CA

t (G′)|·|CA
t (G′′)|

)]
(stepwise information)

↗ step t ⇔ ↘ resolution γ
less informative but more robust

Information content of A : channel capacity IA := maxt I
A
t

10 / 19

Contents

Greedy MaxCut Algorithms

Approximation Set Coding (ASC)

Applying ASC: Count the Approximation Sets

Applying ASC: Experiments and Analysis

10 / 19

Counting – Double Greedy Algorithms

Counting methods similar for double greedy algorithms (D2Greedy,
SG, SG3)

• SG3: assume k vertices
unlabeled in step t,
|CA
t (G

′
)| = |CA

t (G
′′
)| = 2k

• |CA
t (G

′
) ∩ CA

t (G
′′
)|

We propose (and prove
correctness) polynomial time
algorithm to count (not
going in detail here):

11 / 19

Counting – Double Greedy Algorithms

Counting methods similar for double greedy algorithms (D2Greedy,
SG, SG3)

• SG3: assume k vertices
unlabeled in step t,
|CA
t (G

′
)| = |CA

t (G
′′
)| = 2k

• |CA
t (G

′
) ∩ CA

t (G
′′
)|

We propose (and prove
correctness) polynomial time
algorithm to count (not
going in detail here):

11 / 19

Counting – Double Greedy Algorithms

Counting methods similar for double greedy algorithms (D2Greedy,
SG, SG3)

• SG3: assume k vertices
unlabeled in step t,
|CA
t (G

′
)| = |CA

t (G
′′
)| = 2k

• |CA
t (G

′
) ∩ CA

t (G
′′
)|

We propose (and prove
correctness) polynomial time
algorithm to count (not
going in detail here):

11 / 19

Counting – Double Greedy Algorithms

Counting methods similar for double greedy algorithms (D2Greedy,
SG, SG3)

• SG3: assume k vertices
unlabeled in step t,
|CA
t (G

′
)| = |CA

t (G
′′
)| = 2k

• |CA
t (G

′
) ∩ CA

t (G
′′
)|

We propose (and prove
correctness) polynomial time
algorithm to count (not
going in detail here):

11 / 19

Counting – Edge Contraction Algorithm

• In step t, there are k “super"
vertices, get
|CA
t (G

′
)| = |CA

t (G
′′
)| = 2k−1 − 1

•We propose polynomial time
algorithm (and prove correctness)
to exactly count
|CA
t (G

′
) ∩ CA

t (G
′′
)|

• Involves calculating max. number
of common super vertices between 2
super vertex sets (details in the
paper)

12 / 19

Counting – Edge Contraction Algorithm

• In step t, there are k “super"
vertices, get
|CA
t (G

′
)| = |CA

t (G
′′
)| = 2k−1 − 1

•We propose polynomial time
algorithm (and prove correctness)
to exactly count
|CA
t (G

′
) ∩ CA

t (G
′′
)|

• Involves calculating max. number
of common super vertices between 2
super vertex sets (details in the
paper)

12 / 19

Counting – Edge Contraction Algorithm

• In step t, there are k “super"
vertices, get
|CA
t (G

′
)| = |CA

t (G
′′
)| = 2k−1 − 1

•We propose polynomial time
algorithm (and prove correctness)
to exactly count
|CA
t (G

′
) ∩ CA

t (G
′′
)|

• Involves calculating max. number
of common super vertices between 2
super vertex sets (details in the
paper)

12 / 19

Counting – Edge Contraction Algorithm

• In step t, there are k “super"
vertices, get
|CA
t (G

′
)| = |CA

t (G
′′
)| = 2k−1 − 1

•We propose polynomial time
algorithm (and prove correctness)
to exactly count
|CA
t (G

′
) ∩ CA

t (G
′′
)|

• Involves calculating max. number
of common super vertices between 2
super vertex sets (details in the
paper)

12 / 19

Counting – Edge Contraction Algorithm

• In step t, there are k “super"
vertices, get
|CA
t (G

′
)| = |CA

t (G
′′
)| = 2k−1 − 1

•We propose polynomial time
algorithm (and prove correctness)
to exactly count
|CA
t (G

′
) ∩ CA

t (G
′′
)|

• Involves calculating max. number
of common super vertices between 2
super vertex sets (details in the
paper)

12 / 19

Contents

Greedy MaxCut Algorithms

Approximation Set Coding (ASC)

Applying ASC: Count the Approximation Sets

Applying ASC: Experiments and Analysis

12 / 19

Noise Model: Gaussian Edge Weights

Master Graph G
Gaussian distributed edge weights:

Wij ∼ N(µ, σ2
m), µ = 600, σm = 50

Negative edges are set to be µ.

Master graph G with
Gaussian weights

Noisy Graphs G′, G′′

G
′
, G

′′
are obtained by adding Gaussian distributed noise.

Negative edges are set to be 0.

13 / 19

Noise Model: Gaussian Edge Weights

Master Graph G
Gaussian distributed edge weights:

Wij ∼ N(µ, σ2
m), µ = 600, σm = 50

Negative edges are set to be µ. Master graph G with
Gaussian weights

Noisy Graphs G′, G′′

G
′
, G

′′
are obtained by adding Gaussian distributed noise.

Negative edges are set to be 0.

13 / 19

Noise Model: Gaussian Edge Weights

Master Graph G
Gaussian distributed edge weights:

Wij ∼ N(µ, σ2
m), µ = 600, σm = 50

Negative edges are set to be µ. Master graph G with
Gaussian weights

Noisy Graphs G′, G′′

G
′
, G

′′
are obtained by adding Gaussian distributed noise.

Negative edges are set to be 0.

13 / 19

Noise Model: Edge Reversal

Master Graph G

1. approximate bipartite G′b: light edges,
heavy edges

2. randomly flip edges in G′b ⇒ G,
flipping: heavy (light) ⇒ light (heavy)
(flip eij) ∼ Ber(pm); pm = 0.2

heavy edges

light edges

Approximate bipartite
graph G′b

Noisy Graphs G′, G′′

• Flip G ⇒ G
′
and G

′′
.

Probability of flipping an edge: Bernoulli distribution with p,

(flip eij) ∼ Ber(p)

p: noise level

14 / 19

Noise Model: Edge Reversal

Master Graph G

1. approximate bipartite G′b: light edges,
heavy edges

2. randomly flip edges in G′b ⇒ G,
flipping: heavy (light) ⇒ light (heavy)
(flip eij) ∼ Ber(pm); pm = 0.2

heavy edges

light edges

Approximate bipartite
graph G′b

Noisy Graphs G′, G′′

• Flip G ⇒ G
′
and G

′′
.

Probability of flipping an edge: Bernoulli distribution with p,

(flip eij) ∼ Ber(p)

p: noise level

14 / 19

Noise Model: Edge Reversal

Master Graph G

1. approximate bipartite G′b: light edges,
heavy edges

2. randomly flip edges in G′b ⇒ G,
flipping: heavy (light) ⇒ light (heavy)
(flip eij) ∼ Ber(pm); pm = 0.2

heavy edges

light edges

Approximate bipartite
graph G′b

Noisy Graphs G′, G′′

• Flip G ⇒ G
′
and G

′′
.

Probability of flipping an edge: Bernoulli distribution with p,

(flip eij) ∼ Ber(p)

p: noise level

14 / 19

Noise Model: Edge Reversal

Master Graph G

1. approximate bipartite G′b: light edges,
heavy edges

2. randomly flip edges in G′b ⇒ G,
flipping: heavy (light) ⇒ light (heavy)
(flip eij) ∼ Ber(pm); pm = 0.2

heavy edges

light edges

Approximate bipartite
graph G′b

Noisy Graphs G′, G′′

• Flip G ⇒ G
′
and G

′′
.

Probability of flipping an edge: Bernoulli distribution with p,

(flip eij) ∼ Ber(p)

p: noise level

14 / 19

Noise Model: Edge Reversal

Master Graph G

1. approximate bipartite G′b: light edges,
heavy edges

2. randomly flip edges in G′b ⇒ G,
flipping: heavy (light) ⇒ light (heavy)
(flip eij) ∼ Ber(pm); pm = 0.2

heavy edges

light edges

Approximate bipartite
graph G′b

Noisy Graphs G′, G′′

• Flip G ⇒ G
′
and G

′′
.

Probability of flipping an edge: Bernoulli distribution with p,

(flip eij) ∼ Ber(p)

p: noise level

14 / 19

Noise Model: Edge Reversal

Master Graph G

1. approximate bipartite G′b: light edges,
heavy edges

2. randomly flip edges in G′b ⇒ G,
flipping: heavy (light) ⇒ light (heavy)
(flip eij) ∼ Ber(pm); pm = 0.2

heavy edges

light edges

Approximate bipartite
graph G′b

Noisy Graphs G′, G′′

• Flip G ⇒ G
′
and G

′′
.

Probability of flipping an edge: Bernoulli distribution with p,

(flip eij) ∼ Ber(p)

p: noise level
14 / 19

Stepwise Information IA
t

IA
t := EG′,G′′

[
log
(
|C|·|∆CA

t (G′,G′′)|
|CA

t (G′)|·|CA
t (G′′)|

)]

Gaussian Model, σ = 125 Edge Reversal, p = 0.65

• IA
t behavior: increase initially ⇒ reach the optimal step t∗ ⇒

decreases ⇒ vanishes.
• consistent with analysis: ↗ t ⇒ tradeoff of roubstness and
informativeness

15 / 19

Stepwise Information IA
t

IA
t := EG′,G′′

[
log
(
|C|·|∆CA

t (G′,G′′)|
|CA

t (G′)|·|CA
t (G′′)|

)]

Gaussian Model, σ = 125 Edge Reversal, p = 0.65

• IA
t behavior: increase initially ⇒ reach the optimal step t∗ ⇒

decreases ⇒ vanishes.

• consistent with analysis: ↗ t ⇒ tradeoff of roubstness and
informativeness

15 / 19

Stepwise Information IA
t

IA
t := EG′,G′′

[
log
(
|C|·|∆CA

t (G′,G′′)|
|CA

t (G′)|·|CA
t (G′′)|

)]

Gaussian Model, σ = 125 Edge Reversal, p = 0.65

• IA
t behavior: increase initially ⇒ reach the optimal step t∗ ⇒

decreases ⇒ vanishes.
• consistent with analysis: ↗ t ⇒ tradeoff of roubstness and
informativeness

15 / 19

Information Content IA

IA := maxt I
A
t (channel capacity)

Gaussian Edge Weights Model Edge Reversal Model

• All reach max. information content in the noise free limit (G′ = G′′)
(p = 0, 1 in edge reversal model, σ = 0 in Gaussian model)
• 1 node transmits about 1 bit information

16 / 19

Information Content IA

IA := maxt I
A
t (channel capacity)

Gaussian Edge Weights Model Edge Reversal Model

• All reach max. information content in the noise free limit (G′ = G′′)
(p = 0, 1 in edge reversal model, σ = 0 in Gaussian model)

• 1 node transmits about 1 bit information

16 / 19

Information Content IA

IA := maxt I
A
t (channel capacity)

Gaussian Edge Weights Model Edge Reversal Model

• All reach max. information content in the noise free limit (G′ = G′′)
(p = 0, 1 in edge reversal model, σ = 0 in Gaussian model)
• 1 node transmits about 1 bit information

16 / 19

Effect of Greedy Heuristics

Backward greedy < double greedy

Gaussian Edge Weights Model Edge Reversal Model

• Delayed decision making of backward greedy
• EC preserves consistent solutions by contracting lightest edge (having
low probability to be included in the cut)

17 / 19

Effect of Greedy Heuristics

Backward greedy < double greedy

Gaussian Edge Weights Model Edge Reversal Model

• Delayed decision making of backward greedy

• EC preserves consistent solutions by contracting lightest edge (having
low probability to be included in the cut)

17 / 19

Effect of Greedy Heuristics

Backward greedy < double greedy

Gaussian Edge Weights Model Edge Reversal Model

• Delayed decision making of backward greedy
• EC preserves consistent solutions by contracting lightest edge (having
low probability to be included in the cut)

17 / 19

Effect of Greedy Techniques

Gaussian Edge Weights Model Edge Reversal Model

• Initializing (D2Greedy ⇒ SG): ↘, due to early decision making
• Sorting candidates (SG ⇒ SG3): ↘, due to early decision making

18 / 19

Effect of Greedy Techniques

Gaussian Edge Weights Model Edge Reversal Model

• Initializing (D2Greedy ⇒ SG): ↘, due to early decision making

• Sorting candidates (SG ⇒ SG3): ↘, due to early decision making

18 / 19

Effect of Greedy Techniques

Gaussian Edge Weights Model Edge Reversal Model

• Initializing (D2Greedy ⇒ SG): ↘, due to early decision making
• Sorting candidates (SG ⇒ SG3): ↘, due to early decision making

18 / 19

Discussion

• Observation:
Different greedy heuristics (backward, double) and different
processing techniques (sorting candidates, initializing the first
2 vertices) sensitively influence the information content of A .

• Conjecture:

Backward greedy
delayed decision making

< double greedy
for different noise models and noise levels.

19 / 19

Discussion

• Observation:
Different greedy heuristics (backward, double) and different
processing techniques (sorting candidates, initializing the first
2 vertices) sensitively influence the information content of A .
• Conjecture:

Backward greedy
delayed decision making

< double greedy
for different noise models and noise levels.

19 / 19

Thank you!

Qs?

19 / 19

Supplement: Analogy of Communication System

Imaginary communication system:

• message: permutations σs ∈ Σ on the data space
• encoder: encoding σs using CA

t (σs ◦G′) (codebook vector)
• channel: noisy instances G′, G′′

• decoder: max. overlap of approx. sets:
σ̂ := arg maxσ∈Σ |CA

t (σ ◦G′′) ∩ CA
t (σs ◦G′)|

Analogical mutual information in step t

IA
t (σs; σ̂) := EG′,G′′

[
log
(
|C| |C

A
t (G′)∩CA

t (G′′)|
|CA

t (G′)|·|CA
t (G′′)|

)]
channel capacity IA := maxt I

A
t (Information content of A)

19 / 19

	Greedy MaxCut Algorithms
	Approximation Set Coding (ASC)
	Applying ASC: Count the Approximation Sets
	Applying ASC: Experiments and Analysis

