Greedy MaxCut Algorithms and
their Information Content

Yatao Bian, Alexey Gronskiy and Joachim M. Buhmann

Machine Learning Institute, ETH Zurich

April 27, 2015

1/19

Contents

Greedy MaxCut Algorithms

Approximation Set Coding (ASC)

Applying ASC: Count the Approximation Sets

Applying ASC: Experiments and Analysis

2/19

Greedy MaxCut Algorithms
Approximation Set Coding (ASC)
Applying ASC: Count the Approximation Sets

Applying ASC: Experiments and Analysis

2/19

MaxCut

MaxCut: classical NP-hard problem

3/19

MaxCut

MaxCut: classical NP-hard problem
G = (V,E), vertex set V, edge set E, weights w;; > 0

3/19

MaxCut

MaxCut: classical NP-hard problem
G = (V,E), vertex set V, edge set E, weights w;; > 0
CUT c:= (S, V\S), cut space C (|C| =2""1 —1)

3/19

MaxCut

MaxCut: classical NP-hard problem
G = (V,E), vertex set V, edge set E, weights w;; > 0
CUT c:= (S, V\S), cut space C (|C| =2""1 —1)
Cut value: cut(c,G) := 3 ;g jev\ s Wij

3/19

MaxCut

MaxCut: classical NP-hard problem
G = (V,E), vertex set V, edge set E, weights w;; > 0
CUT c:= (S, V\S), cut space C (|C| =2""1 —1)
Cut value: cut(c,G) := 3 e icv\ s Wij

max
cut:-)

I 5=2+3

3/19

Greedy Algorithms for MaxCut

Greedy
Name - . . ——|
Sorting | Init. Vertices

Deterministic Double Greedy
SG (Sahni & Gonzales) Double v
SG3 (variant of SG) v v
Edge Contraction (EC) | Backward | Vv

4/19

Double Greedy Taxonomy

5/19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

5/19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V, E)
Ensure: cut and the cut value

5/19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V, E)
Ensure: cut and the cut value

1: init. 2 solutions S :=0, T :=V
e works on 2 solutions
simultaneously

5/19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V, E)
Ensure: cut and the cut value
1: init. 2 solutions S :=0, T :=V
//in random order e works on 2 solutions

2: for each vertex v; € V do simultaneously

e for each vertex, decides
whether it should be
added to S, or removed
from T

10: end for

5/19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V, E)
Ensure: cut and the cut value
1: init. 2 solutions S :=0, T :=V

//in random order e works on 2 solutions
2: for each vertex v; € V do simultaneously
3: a; := gain of adding v; to S
4: b; := gain of removing v; from T o for each vertex, decides

whether it should be
added to S, or removed
from T

10: end for

5/19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V, E)
Ensure: cut and the cut value

1: init. 2 solutions S :=0, T :=V

//in random order e works on 2 solutions

2: for each vertex v; € V do simultaneously

3 a; := gain of adding v; to S

4: bL := gain of removing v; from T o for each vertex, decides
5. if a; > bi then whether it should be

6: add v; to S

2 else added to S, or removed
8: remove v; from T' from T

9: end if
10: end for

5/19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V, E)
Ensure: cut and the cut value
1: init. 2 solutions S :=0, T :=V
//in random order

2: for each vertex v; € V do

3 a; := gain of adding v; to S

4: b; := gain of removing v; from T
5: If a; 2 bz then

6: add v; to S

7 else

8: remove v; from T'

9: end if

10: end for

11: return cut: (S, V\S), cut value

e works on 2 solutions
simultaneously

e for each vertex, decides
whether it should be
added to S, or removed
from T

5/19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V, E)
Ensure: cut and the cut value

1: init. 2 solutions S :=0, T :=V

//in random order e works on 2 solutions

2: for each vertex v; € V do simultaneously

3 a; := gain of adding v; to S

4: bL := gain of removing v; from T o for each vertex, decides
5. if ai > b; then whether it should be

6: add v; to S

; else added to S, or removed
8: remove v; from T' from T

9: end if
10: end for
11: return cut: (S, V\S), cut value

Differences between the double greedy algorithms:

5/19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

1

10
11

2
3
4:
5:
6.
7
8

9:
: end for
: return cut: (S, V\S), cut value

Require: graph G = (V, E)
Ensure: cut and the cut value
: init. 2 solutions S :=0, T :=V

//in random order

: for each vertex v; € V do

a; := gain of adding v; to S
b; := gain of removing v; from T
If a; Z bz then
add v; to S
else
remove v; from T’

end if

e works on 2 solutions
simultaneously

e for each vertex, decides
whether it should be
added to S, or removed
from T

Differences between the double greedy algorithms:

D2Greedy — [HAEediCnilae A Egies — SG

5/19

Double Greedy Taxonomy
Deterministic Double Greedy (D2Greedy)

Require: graph G = (V, E)
Ensure: cut and the cut value
1: init. 2 solutions S :=0, T :=V
//in random order
2: for each vertex v; € V do

3: a; := gain of adding v; to S

4: b; := gain of removing v; from T
5: If a; Z bl then

6: add v; to S

7: else

8: remove v; from T'

9: end if

10: end for

11: return cut: (S, V\S), cut value

e works on 2 solutions
simultaneously

e for each vertex, decides
whether it should be
added to S, or removed
from T

Differences between the double greedy algorithms:

D2Greedy — [HEemiiEhilae P Eeiess — SG
SG — sort the candidates — SG3

5/19

Backward Greedy — Edge Contraction Algorithm

6/19

Backward Greedy — Edge Contraction Algorithm

Edge Contraction (EC)

6/19

Backward Greedy — Edge Contraction Algorithm

Edge Contraction (EC)

Require: graph G = (V, E)
Ensure: cut, cut value

6/19

Backward Greedy — Edge Contraction Algorithm

Edge Contraction (EC)

Require: graph G = (V, E)
Ensure: cut, cut value
1: repeat

5: until 2 “super" vertices left

6/19

Backward Greedy — Edge Contraction Algorithm

Edge Contraction (EC) e contract the lightest edge in

Require: graph G' = (V, E) each step
Ensure: cut, cut value
1: repeat

5: until 2 “super" vertices left

6/19

Backward Greedy — Edge Contraction Algorithm

Edge Contraction (EC) e contract the lightest edge in

Require: graph G' = (V, E) each step
Ensure: cut, cut value
1: repeat

5: until 2 “super" vertices left

6/19

Backward Greedy — Edge Contraction Algorithm

Edge Contraction (EC) e contract the lightest edge in

Require: graph G' = (V, E) each step
Ensure: cut, cut value
1: repeat

2: find the lightest edge (z,y) in G

5: until 2 “super" vertices left

6/19

Backward Greedy — Edge Contraction Algorithm

Edge Contraction (EC) e contract the lightest edge in
Require: graph G = (V, E) each step
Ensure: cut, cut value
1: repeat
2: find the lightest edge (z,y) in G

3: contract z,y to be a super vertex v

5: until 2 “super" vertices left

6/19

Backward Greedy — Edge Contraction Algorithm

Edge Contraction (EC) e contract the lightest edge in

Require: graph G' = (V, E) each step
Ensure: cut, cut value
1: repeat
2: find the lightest edge (z,y) in G
3: contract z,y to be a super vertex v
4: set the edge weights connecting v
5: until 2 “super" vertices left

6/19

Backward Greedy — Edge Contraction Algorithm

Edge Contraction (EC) e contract the lightest edge in

Require: graph G' = (V, E) each step
Ensure: cut, cut value
1: repeat

2 find the lightest edge (z,y) in G

3 contract z,y to be a super vertex v
4: set the edge weights connecting v
5: until 2 “super" vertices left

6: return the 2 super vertices

6/19

Backward Greedy — Edge Contraction Algorithm

Edge Contraction (EC) e contract the lightest edge in

Require: graph G' = (V, E) each step
Ensure: cut, cut value
1: repeat

2 find the lightest edge (z,y) in G

3 contract z,y to be a super vertex v
4: set the edge weights connecting v
5: until 2 “super" vertices left

6: return the 2 super vertices

Backward greedy: EC tries to remove the lightest edge from the
cut set in each step

6/19

Greedy MaxCut Algorithms
Approximation Set Coding (ASC)
Applying ASC: Count the Approximation Sets

Applying ASC: Experiments and Analysis

6/19

Glance of Approximation Set Coding (ASC)

How to measure the robustness of these algorithms facing noise?

7/19

Glance of Approximation Set Coding (ASC)

How to measure the robustness of these algorithms facing noise?

ASC: an analogy to Shannon’s communication theory
learning procedure < communication process [Buhmann 2010]

7/19

Glance of Approximation Set Coding (ASC)

How to measure the robustness of these algorithms facing noise?

ASC: an analogy to Shannon’s communication theory
learning procedure < communication process [Buhmann 2010]

“Master" Graph Two
Instances
2 instances scenario: training
G’, test G” (noisy instaces L
of @) / noise Vel
G
T—— noise > o

7/19

Glance of Approximation Set Coding (ASC)

How to measure the robustness of these algorithms facing noise?

ASC: an analogy to Shannon’s communication theory
learning procedure < communication process [Buhmann 2010]

“Master" Graph Two
Instances
2 instances scenario: training
G’, test G” (noisy instaces L
of @) / noise Vel
G
T—— noise > o

Models/algorithms should generalize well from G’ to G”

7/19

Approximate Solving and Algorithmic Approx. Set

e Empirical risk minimizer
ct(G) = argmin, R(c, G)

8/19

Approximate Solving and Algorithmic Approx. Set

e Empirical risk minimizer
ct(G) = argmin, R(c, G)

@) E)

8/19

Approximate Solving and Algorithmic Approx. Set

e Empirical risk minimizer
ct(G) = argmin, R(c, G)

nois:

e
(@) F (@)
e y-approximation set (solutions ~y distant from

ct): C(G):={ceC| R(c,G) — R(c*,G) < v}
~: resolution

8/19

Approximate Solving and Algorithmic Approx. Set

e Empirical risk minimizer C,(G)
ct(G) = argmin, R(c, G)

olse
(@) F (@)
e y-approximation set (solutions ~y distant from

ct): C(G):={ceC| R(c,G) — R(c*,G) < v}
~: resolution

8/19

Approximate Solving and Algorithmic Approx. Set

e Empirical risk minimizer C,(G)
¢t (G) == argmin. R(c, G)

nois:

G @)

e y-approximation set (solutions «y distant from
ct): C(G):={ceC| R(c,G) — R(c*,G) < v}
~: resolution

’ A
(’tsl;m

8/19

Approximate Solving and Algorithmic Approx. Set

e Empirical risk minimizer C,(G)
ct(G) = argmin, R(c, G)

@) E)

e y-approximation set (solutions «y distant from
ct): C(G):={ceC| R(c,G) — R(c*,G) < v}
~: resolution

CA

tStart

e Flow of contractive <7 sequence of the
available solution sets in each step ¢

8/19

Approximate Solving and Algorithmic Approx. Set

e Empirical risk minimizer C,(G)
¢t (G) == argmin. R(c, G)

nois:

cH@) £ e a)

e y-approximation set (solutions «y distant from
ct): C(G):={ceC| R(c,G) — R(c*,G) < v}
~: resolution

’ A
(’tsl;m

e Flow of contractive <7 sequence of the
available solution sets in each step ¢

Algorithmic t-approximation set [Gronskiy and
Buhmann 2014]:

7 (G)

8/19

Approximate Solving and Algorithmic Approx. Set

e Empirical risk minimizer C,(G)
¢t (G) == argmin. R(c, G)

nois:

G @)

e y-approximation set (solutions «y distant from
ct): C4(G) :={ceC ‘ R(c,G) = R(ct,G) <~}
~y: resolution

’ A
C tStart

e Flow of contractive & sequence of the
available solution sets in each step ¢

Algorithmic t-approximation set [Gronskiy and
Buhmann 2014]:

7 (G)

/" step t <\ resolution ~

8/19

Analogy of Communication System

9/19

Analogy of Communication System

(Not going into detail here)

9/19

Analogy of Communication System

(Not going into detail here)

Analogical mutual information in step ¢

A B [CI|ACE (G",G")|)]
L7 = Ecic [1°g<|cf"<c/>|-\cg2’(a">|

ACH# (G',G") = CF (G nCF(G")

9/19

Analogy of Communication System

(Not going into detail here)

Analogical mutual information in step ¢

A B [CI|ACE (G",G")|)]
L7 = Ecic [1°g<|cff<c/>|-\05’(a">|

ACH# (G',G") = CF (G nCF(G")

Information content of .o/

9/19

Analogy of Communication System

(Not going into detail here)

Analogical mutual information in step ¢

A B [CI|ACE (G",G")|)]
L7 = Ecic [1°g<|cf"<c/>|-\cg2’(a">|

ACH# (G',G") = CF (G nCF(G")

Information content of .o/

channel capacity I/ := max; I}

9/19

Information Content of an Algorithm o/

Data
Inputs

Algorithm Optimal

(GNCE (
QLICE (G7)]

mutual information: I := E[log(|€|||cd
t

(stepwise information)

Information content of .7: channel capacity I/ := max; I}

10/19

Information Content of an Algorithm o

Data

Inputs Algorithm
o — 9(G)
P(G)
o — 2 (G")
mutual information: I := {log<|C\‘C£2¢

(stepwise information)
" step t <\ resolution
less informative but more robust
Information content of .&7: channel capacity I := max; I}

10/19

Information Content of an Algorithm o

Dat . Optimal
ata Algorithm p 'ma
Inputs

o — o (G")
P(G)
Qr — o (G")
mutual information: I := [10g<|C\ “CW)ﬂgZ((g,’,))")}

(stepwise information)
" step t <\ resolution
less informative but more robust
Information content of .&7: channel capacity I := max; I}

10/19

Information Content of an Algorithm o

Data . Optimal
Inputs Algorithm H(G)
o — o (G")
Qr — o (G")
mutual information: I := [10g<|C\ “CW)ﬂgZ((g,’,))")}

(stepwise information)
" step t <\ resolution
less informative but more robust
Information content of .&7: channel capacity I := max; I}

10/19

Information Content of an Algorithm o

Data . Optimal
Inputs Algorithm L(G)

/_\‘@

o — (G
P(G) /\
<G” _ A (G @
mutual information: I := [10g<|C\ “CW)ﬂgZ((g,’,))")}

(stepwise information)
" step t <\ resolution
less informative but more robust
Information content of .&7: channel capacity I := max; I}

10/19

Information Content of an Algorithm o

Data . Optimal
Inputs Algorithm L(G)

/_\:.

o — o (G")
P(G) /\‘ °
Qr — o (G")
mutual information: I := [10g<|C\ “CW)ﬂgZ((g,’,))")}

(stepwise information)
" step t <\ resolution
less informative but more robust
Information content of .&7: channel capacity I := max; I}

10/19

Greedy MaxCut Algorithms
Approximation Set Coding (ASC)
Applying ASC: Count the Approximation Sets

Applying ASC: Experiments and Analysis

10/19

Counting — Double Greedy Algorithms

Counting methods similar for double greedy algorithms (D2Greedy,
SG, SG3)

11/19

Counting — Double Greedy Algorithms

Counting methods similar for double greedy algorithms (D2Greedy,
SG, SG3)

SG3: assume k vertices

unlabeled in step ¢,
ICE (G| = |CF (G| =2

11/19

Counting — Double Greedy Algorithms

Counting methods similar for double greedy algorithms (D2Greedy,
SG, SG3)

SG3: assume k vertices

unlabeled in step ¢,
ICE (G| = |CF (G| =2
ICE(G)N CP (G

11/19

Counting — Double Greedy Algorithms

Counting methods similar for double greedy algorithms (D2Greedy,
SG, SG3)

SG3 assume]{‘l vertices For the SG3 (Alg. 6, see Supplement), after step ¢ (t =
B 1,---,n—1) there are k = n — ¢ — 1 unlabelled vertices, and

unlabe|§d in step ¢, . it is clear that |C(CY)] = |C(G")]| = 2.
o _ of _ 9ok To count the intersection set A(G’, G”), assume the solution
|Ct (G)| - |Ct (G)‘ =2 set pair of G’ is (S1,5), the solution set pair of G” is

! 1" (87, S%), so the unlabelled vertex sets are 7" = V\{S]US5},

|Cfi(G) N CtQ{(G)| T" = V\{S{ U S¥}, respectively. Denote L := T' NT" be

the common vertices of the two unlabelled vertex sets, so

We prOpOSG (a nd prove I =|L| (0 <1 < k) is the number of common vertices in

. . the unlabelled % vertices. Denote M’ := T'\L, M" := T"\L

CorreCtness) P0|yn0m |a| time be the sets of different vertex sets between the two unlabelled
algorithm to count (not eriex et Then

g ol if (SY\M’, S§\M") is matched by

going in detail here): A@6") :{ (SE\M", SM”) or (S5\M”, S{\1)

0 otherwise

11/19

Counting — Edge Contraction Algorithm

e In step t, there are k “super"
vertices, get
G (G =G =21 =1

12/19

Counting — Edge Contraction Algorithm

e In step t, there are k “super"
vertices, get
G (G =G =21 =1

e We propose polynomial time
algorithm (and correctness)
to exactly count

G (G nCE (@)

12/19

Counting — Edge Contraction Algorithm

Algorithm 3: Common Super Vertex Counting

L In Step t, there are k; “Super" z)nlf;‘l;l:r‘;/?afii:t];[:S&E;cien:}'ez‘(n::;ﬂl:s?pcr vertices after all
Vertices get o possible contractions
’ 1c:=0;

o (AN 1 (Y] — ok—1 2vhie D21 do .
GG =CP(G)| =2"" -1 R ETPR T
H if g;\p: # 0 then
6 L For pi, ﬁmLiJ P EPP\{TLS(,L pi}/\ﬁ((q,\pi) #0;
. . 7 piv = PiUpy, P:= PU{pw \{pi,ps} :
e We propose polynomial time s | i purgs 20 then

. ’ For q;, find q;r € Q\{q;} st aqy N (pi\ay) # 0:
algorithm (and &Y correctness) w | L aw ey Uay Q= QU {ay e ay)

n if pyy == q;y then
to exactly count " Luncmovc B iy from P, Q. respectively:
c=c+1;

|C‘ZQ{(GI) m C‘EW(G”)| 14 return ¢

12/19

Counting — Edge Contraction Algorithm

Algorithm 3: Common Super Vertex Counting

L 1] I . disti E [V sets P,
L d In Step t' there are k; Super Onlf;‘m:f‘ﬁ’ax;:‘::];l:3‘1-:13;0:’63_330:‘6“:““ s?pcr vertices after all
. possible contractions
vertices, get Lot
A (VN — 1 (] — ok—1 bk Lz .
GG =CP(G)| =2"" -1 R IETPR T
5 if q;\p: # 0 then
6 L For pi, ﬁmLiJ P EPP\{TLS(,L pi}/\ﬁ((q,\pi) #0;
. . 7 piv = PiUpy, P:= PU{pw \{pi,ps} :
e We propose polynomial time s | i purs 20 then
. ” For q;, find q;r € Q\{q,} s.t. g N (pi\ay) # 0:
algorithm (and &Y correctness) w | L aw = ayUay Q= QU {ay e ay)
n if pyy == q;y then
to exactly count " Luncmovc B iy from P, Q. respectively:
13 c=c+1;

|C‘ZQ{(GI) m C‘EW(G”)| 14 return ¢

e Involves calculating max. number
of common super vertices between 2
super vertex sets (details in the

paper)

12/19

Counting — Edge Contraction Algorithm

e In step t, there are k “super"

vertices, get
G (G =G =21 =1

e We propose polynomial time
algorithm (and correctness)
to exactly count

G (G nCE (@)

e Involves calculating max. number
of common super vertices between 2
super vertex sets (details in the

paper)

Algorithm 3: Common Super Vertex Counting
Input: Two distinct super vertex sets P,
Output: Maximum number of common super vertices after all
possible contractions

1c:=0;

2 while P # 0 do

3 Randomly pick p; € P;

4 Find q; € Q s.t. p;Naq; #0;

5 if q;\p: # 0 then

6 For pi, find pir € P\{p:} s.t. pir N (q;\p:) # 0;
7 piv :=Pi Upy, P =P U {piw \{pi,pr}:

8

if p;\q; # () then
9 For q;, find q;r € Q\{q,} s.t. a; N (pi\ay) # 0;
10 ayy = Uay, Q= Q U{ay \{ay, a5} 5
1 if pyy == q;y then
12 L Remove piiv, qiy from P, Q, respectively;
13 ci=c+1;
14 return ¢

Theorem 1. Given two distinct super vertex sets P :=
{P1.P2, . Pr} Q := {d1,dz,- -~ ,an} (any 2 super ver-
tices inside P or Q) do not intersect, and there is no common
super vertex between P and Q)), such that pyUpaU---Upy, =
qi Uqe U---Uap, Alg. 3 returns the maximum number of
common super vertices between P and () after all possible
contractions.

12/19

Greedy MaxCut Algorithms
Approximation Set Coding (ASC)
Applying ASC: Count the Approximation Sets

Applying ASC: Experiments and Analysis

12/19

Noise Model: Gaussian Edge Weights

Master Graph G
Gaussian distributed edge weights:

Wij ~ N(u,02,), u = 600, 0, = 50

Negative edges are set to be u.

13/19

Noise Model: Gaussian Edge Weights

Master Graph G M

Gaussian distributed edge weights:

Wij ~ N(:uvgzn)a p =600, 0., = 50

Negative edges are set to be p. Master graph G with

Gaussian weights

13/19

Noise Model: Gaussian Edge Weights

Master Graph G

Gaussian distributed edge weights:
vyswye-vomen \ K]/

Negative edges are set to be u.

Master graph G with
Gaussian weights

N/oisx/Graphs leyes

G, G are obtained by adding Gaussian distributed noise.

Negative edges are set to be 0.

13/19

Noise Model: Edge Reversal

Master Graph G

14/19

Noise Model: Edge Reversal

Master Graph G

1. approximate bipartite G}: light edges,
heavy edges

14/19

Noise Model: Edge Reversal

heavy edges
Master Graph G NG

1. approximate bipartite G}: light edges,

heavy edges
, light edges

Approximate bipartite
graph G

14/19

Noise Model: Edge Reversal

heavy edges
Master Graph G NG

1. approximate bipartite G}: light edges, |
heavy edges

2. randomly flip edges in G} = G, . , light edges
flipping: heavy (light) = light (heavy) ! .
(flip e;;) ~ Ber(pm); pm = 0.2 ' :

Approximate bipartite
graph G

14/19

Noise Model: Edge Reversal

heavy edges
Master Graph G NG

1. approximate bipartite G}: light edges, |
heavy edges

2. randomly flip edges in G} = G, . , light edges
flipping: heavy (light) = light (heavy) ! .
(flip e;;) ~ Ber(pm); pm = 0.2 ' :

Approximate bipartite
/
. o graph G}
Noisy Graphs G, G

14/19

Noise Model: Edge Reversal

heavy edges
Master Graph G N
1. approximate bipartite G}: light edges, |
heavy edges
2. randomly flip edges in G} = G, . , light edges
flipping: heavy (light) = light (heavy) ! .
(flip e;;) ~ Ber(pm); pm = 0.2 : !

Approximate bipartite
/
. o graph G}
Noisy Graphs G, G

Flip G = G and G-
Probability of flipping an edge: Bernoulli distribution with p,

(flip e;;) ~ Ber(p)

p: noise level

14/19

Stepwise Information I

P S lc|-|AC (GG)]
I =Eaa {1°g<|6f<c’)|-\czﬂ<c~>\

o
i
s

EC (Backward)

DZGiEdy EC (Backward) fi

Stepwise Information per Node

Stepwise Information per Node

107 Stme‘p ® tr w0 10 Stéup ® tr

Gaussian Model, o = 125 Edge Reversal, p = 0.65

15/19

Stepwise Information I

P S lc|-|AC (GG)]
L7 =Eaq {1°g<|cz”<c’>|-\czﬂ<c~>\

o
i
"

EC (Backward)

Stepwise Information per Node

Stepwise Information per Node

“ Stép () teow

Gaussian Model, o = 125 Edge Reversal, p = 0.65

e I behavior: increase initially = reach the optimal step t* =
decreases = vanishes.

15/19

Stepwise Information I

g B C[|ACE(G",G"))|)]
L7 =Eaq {log(|c,f”<c’>|-\ctﬂ<c~>\

o
i
"

EC (Backward)

Stepwise Information per Node

Stepwise Information per Node

“ Stép (1) teow

Gaussian Model, o = 125 Edge Reversal, p = 0.65

e I behavior: increase initially = reach the optimal step t* =
decreases = vanishes.
e consistent with analysis: ¢t = tradeoff of roubstness and

informativeness
15/19

Information Content [

I¥ := max; I (channel capacity)

-

EC (Backward)

Information Content per Node

] 0 4 6 8 100 120 140 180 180 200

Noise

Gaussian Edge Weights Model

=

Information Content per Node

o o1 02 03

08 09 1

" Ngisenfp] v

Edge Reversal Model

16 /19

Information Content ¥

IW

:= max; I (channel capacity)

1 1

EC (Backward) Z
EC (Batkward)

Information Content per Node

Information Content per Node

0 0 4 60 8 100 120 140 160 180 200 o o1 02 03 04 05 06 07 08 09 1
Noise Noise [p]
Gaussian Edge Weights Model Edge Reversal Model

e All reach max. information content in the noise free limit (G’ = G")
(p = 0,1 in edge reversal model, o = 0 in Gaussian model)

16 /19

Information Content ¥

I&f

:= max; If7 (channel capacity)

1 1

EC (Backward)
EC (Batkward)

Information Content per Node

Information Content per Node

] 0 4 e 8 100 120 140 160 180 200 o o1 02 03 7 08 09 1

Noise Noise [p]

Gaussian Edge Weights Model Edge Reversal Model

e All reach max. information content in the noise free limit (G’ = G")
(p = 0,1 in edge reversal model, o = 0 in Gaussian model)
e 1 node transmits about 1 bit information

16 /19

Effect of Greedy Heuristics

Backward greedy = double greedy

-

EC (Backward)

Information Content per Node

] 0 4 6 8 10 120 140 180 180 200

Noise

Gaussian Edge Weights Model

=

Information Content per Node

08 09 1

" Ngiseufp] v

Edge Reversal Model

17/19

Effect of Greedy Heuristics

Backward greedy = double greedy
1 1

EC (Backward)

Information Content per Node

Information Content per Node

] 0 4 6 8 10 120 140 180 180 200 o o1 02 03

Noise Noise [p

08 09 1

Gaussian Edge Weights Model Edge Reversal Model

e Delayed decision making of backward greedy

17/19

Effect of Greedy Heuristics

Backward greedy = double greedy
1 1

EC (Backward)

Information Content per Node

Information Content per Node

0 2 4 e 8 10 120 140 160 180 200 o o1 02 03

Noise Noise [p]

Gaussian Edge Weights Model Edge Reversal Model

e Delayed decision making of backward greedy
e EC preserves consistent solutions by contracting lightest edge (having
low probability to be included in the cut)

17/19

Effect of Greedy Techniques

1 1

EC (Backward)

Information Content per Node

Information Content per Node

J —— 10

I U N R Noise Tol
Gaussian Edge Weights Model Edge Reversal Model

18/19

Effect of Greedy Techniques

1 1

EC (Backward)

Information Content per Node

Information Content per Node

I U N R Noise Tol
Gaussian Edge Weights Model Edge Reversal Model

o Initializing (D2Greedy = SG): \, due to early decision making

18/19

Effect of Greedy Techniques

1 1

EC (Backward)

Information Content per Node

Information Content per Node

0 0 4 e s 10 12 140 180 1@ 200 o o1 02 03

Noise " Ngisen[ﬁp] v
Gaussian Edge Weights Model Edge Reversal Model

o Initializing (D2Greedy = SG): \, due to early decision making
e Sorting candidates (SG = SG3): \, due to early decision making

18/19

Discussion

Observation:

Different greedy heuristics (backward, double) and different
processing techniques (sorting candidates, initializing the first
2 vertices) sensitively influence the information content of 7.

19/19

Discussion

Observation:

Different greedy heuristics (backward, double) and different
processing techniques (sorting candidates, initializing the first
2 vertices) sensitively influence the information content of 7.
Conjecture:

delayed decision making

Backward greedy = double greedy
for different noise models and noise levels.

19/19

Qs?

19/19

Supplement: Analogy of Communication System

Imaginary communication system:

message: permutations o € X on the data space
encoder: encoding o using C{ (o, 0 G') (codebook vector)
channel: noisy instances G', G”

decoder: max. overlap of approx. sets:
6 := argmax, ey |Cf (0 0 G") N O (050 G")|

Analogical mutual information in step ¢

o (c7 (@)nC (@)
1(0:8) = Ear los (1€ GhriGici e)

channel capacity I := max; I (Information content of .o/)

19/19

	Greedy MaxCut Algorithms
	Approximation Set Coding (ASC)
	Applying ASC: Count the Approximation Sets
	Applying ASC: Experiments and Analysis

