ETH:zurich

Provable Non-Convex Optimization and
Algorithm Validation via Submodularity

Yatao Bian
ETH Zirich
November 20, 2019



Binary
submodularity

Continuous Principled algorithm validation
Submodularity: Provable for MAXCUT (unconstrained
non-convex optimization submodular maximization)

[BMBK ‘17], [BLKB ‘17] [BGB ’15], [BGB ‘16]

Principled algorithm
validation via continuous
submodular optimization

[BBK ‘19]
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Why do we need
continuous submodularity?




Motivation 1: Prior knowledge for modeling

Continuous DR-submodularity captures
“Diminishing Returns (DR)” phenomenon

happiness gained by having
some quantity of (water, coke)

5= 50 ml water
~ | 50 ml coke
To model:
1 ml 1 ml - preference
f(6 T 1 ml]) B f([l ml ) - influence
100 ml 100 mi - satisfaction
m m
> — - revenue
_f(6+[100ml) f( 100ml)

marginal gain of happiness by
having 8 more (water, coke)
based on a large context



Motivation 2: A non-convex structure with
provable optimization

Quadratic Program (QP):

f(x) = %XTHX + hTx + ¢, H is symmetric

-1 -2

20 _ _ - |1 ]
Vf =H, H= [_2 _1], eigenvalues: [_3

Non-convex/non-concave - Continuous submodular



It arises in:

Lovasz/Multilinear extensions of
submodaular set functions
[Lovasz ‘83][Calinescu et al. ‘07]

DPP MAP inference
[Gillenwater et al. "12]
[BLKB “17]

Social network mining
[BMBK “17]

Risk-sensitive submodular
optimization [Wilder 17]

Robust budget allocation
[Staib et al. “17]

Mean field inference for
the posterior agreement
(PA) distribution

[BBK “19]

Product recommendation Revenue maximization

il

Amazon baby registries. Left: furniture, right: toys

.!‘

mage summarlzatlon

Budget allocation




Revenue maximization with continuous assignments
[Hartline et al. ’08, BMBK ‘17]

Task: advertise an innovation/product based on a social connection graph
- max. expected revenue

Given: connection graph B
- Nodes: all users (all people on FB)

- Edges: influence strength between users 3.4

2.4

2,6 .. C
A 05 opinion leader

Viral marketing: give some users a certain
amount of free products, to trigger further adoptions

x € R%: free trial time for n users

How to model expected revenue: f(x)?

giving ’ more trial time
Revenue f(x) satisfies

DR property: will hurt influence of ﬂ



How to characterize continuous submodularity?




Three orders of characterizations [BIVIBK ‘17]

coordinate-wise less equal

antitone mapping: X < y implies Vf(x) = Vf(y)

Continuous submodular f

Convex g, A€ [0,1]

O order | f(x) + f(y) = f(xVy)+ f(XAY)
15t order V£ (-): weak antitone mapping
2
2"d order L(X) <0,Vi+#]
S )
axian
V: coordinate-wise max.
not <0 <0 <0 ; . .
care A\: coordinate-wise min.
=0 | not <0 <0 X y XVy XAy
care
<0 <0 | not <0 2 1 2 1
care O 2 2 O
<0 <0 <0 not
care 4 3 4 3

Hessian




Continuous submodularity: Repulsion among
different dimensions

does not say anything about

. ) 2
a single coordinate! 0°f (%) .
<0,V #
axian
not <0 <0 <0
care
<0 not <0 <0
care
<0 <0 not <0
care
<0 <0 <0 not
care
Hessian

Arbitrary behavior along a single coordinate

Often, objectives have some structure along a single coordinate



Submodularity + Concavity along any single coordinate

= Continuous DR-submodularity

0.8 0.5

0.6

0.4 0.2 ’
X2 0 x1

A 2-D Softmax extension [Gillenwater et al. ‘12]
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Two classes of continuous

submodular functions [Bviek “17]

Continuous Submodular

Continuous DR-Submodular

o

submodular

Submodular

DR-

J

dx) +d(y) =2dxVy)+dExAy)

Oth order X > f(xVv X A . :
fGO+ 1) = fxvy) +f(xAy) & coordinate-wise concave
1st order V£ (:): weak antitone mapping Vd(-): antitone mapping
0% f(x 0%d(x
2" order f& <0,Vi+]j %) <0,Yi,j
dx;0x; 0x;0x;
not | <0 | <0 | <0 <0 | <0| <0]| <0
care
<0 | not <0 <0 <0 <0 <0 <0
care
<0 <0 | not <0 <0 <0 <0 <0
care
<0 <0 <0 | not <0 <0 <0 <0
care

12



How to maximize continuous
DR-submodular functions?
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DR-submodular maximization: Setup & hardness

u
mE%DX f (X) A convex set with a
X lower bound u, s.t. y
P is convex Vy € P, the hyperrectangle
& down-closed: [u y]cP u

Hardness & Inapproximability: The above problem is NP-hard.

When P is a unit hypercube (P=[0, 1]™), there is no poly. time
(1/2 + €)—approximation algorithm for any € > 0 unless RP=NP.
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A summary of our theoretical results

Mathematical characterizations
of submodularity over integer &
continuous domains [BIVIBK “17]

asb->f()<f(b)
Monotone DR-submodular max.

with down-closed convex constraints
[BMIBK “17]

Non-monotone DR-submodular max.
with box constraints
[BBK ‘19]

Non-monotone DR-submodular max.
with down-closed convex constraints
[BLKB “17]

Oth order, 15t order, 2" order,
antitone gradient etc

- Inapproximability: 1 — 1/e
- Optimal algorithm: A Frank-Wolfe Variant

- Inapproximability: 1/2
- Optimal algorithm: DR-DoubleGreedy

- Inapproximability: Open problem
- Best algorithm so far: Shrunken Frank-Wolfe,
1/e guarantee
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Non-monotone DR-submodular max.
with down-closed convex constraints
[BLKB “17]

- Inapproximability: Open problem
- Best algorithm so far: Shrunken Frank-Wolfe,
1/e guarantee
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Local-Global relation
[BLKB “17]

- Let X be a stationary point in P
-0=Pn{ylysu-—x}
- Let z be the a stationary pointin Q

Theorem:

max{f (x), f (2)} = 7 f (x")

Can be generalized to approximately
stationary points

17



Local-Global relation = Two-Phase algorithm

Two-Phase algorithm

X < Non-convex Solver(P) //PhaselonP 1/4 Guarantee
Q<Pniylysu—xj}

Z < Non-convex Solver(Q) //PhasellonQ
Output: argmax{f (x), f(z)}

- Can use existing non-convex solvers to find (approximately)
stationary points (used non-convex Frank-Wolfe in the
experiments)

- Performs surprisingly good in experiments

18



Key property for a second algorithm

o . . . . . . - . .
Cross-section in a random direction Cross-section in a positive direction

Lemma: A DR-submodular f is concave along

any non-negative direction.
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Shrunken Frank-Wolfe: Follow concavity
[BLKB ‘17]

Shrunken EW Can' r'nake-d to. be a

c e e positive direction
Choose initializer x € P because:

. . Shrunken operator .
In each iteration do: s from

is from

d < argMaXyep, v< ﬁ—X<V' Vf(X)) can always move P

X < X+ vyd to the positive orthant
Return X without changing structure

of the objective
(since P is down-closed)

Y
K

Theorem: f(xX) > = f( )—L2

L: Lipschitz gradient, D: diameter of P
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Algorithm validation through the
posterior agreement (PA) framework

[BBK “19]
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Motivation of posterior agreement

Product recommendation F(S): a parameterized submodular utility function

e.g., a deep submodular neural net [Bilmes et al. “17]

Ground set V: n products, n usually large

Which subset S € V to recommend?

Noisy training data D: a collection of chosen subsets by the users

- Learning: learn parameters and hyperparameters (architecture, stopping time
& learning rate of SGD etc) of F(S)

- Inference: sample a subset from the distribution induced by F(S)
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How to conduct inference and hyperparameter selection
with noisy observations?

- Can be achieved through the posterior agreement (PA)
framework
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Two-instance scenario, PA distribution and PA objective
[Buhmann ‘10, BGB '15, BGB ‘16]

hyperparameter
choice posteriors described by
two noisy submodular probabilistic log-submodular
datasets utility functions models [Djolonga et al. ‘14]
D' > F(S;D") > p(S|D") «x exp(F(S;D"))
D" > F(S;D") > p(SID") < exp(F(S;D"))

PA distribution:

p 2 (S) < p(SIDOPSID) e exp[ F(S; DY)+ (F(S; D) | PR R alg S caes

PA objective: measure the agreement between the two posteriors.
It is verified in an information-theoretic manner [BGB '16].

2sp(SID)p(SID™) used for hyperparameter validation

24



Inference via mean field approximation
[BBK “19]

Inference: sample from the PA distribution pPA(S) - intractable

Mean field inference: approximate pPA(S) by a factorized surrogate distribution:
q(S1x) := [lie s xi [1je s(1 — x;), x € [0, 1]", then sample from q(S|x)

logZ™* = logYcexp[F(S;D") + (F(S; D] (PA Evidence)

=

Eq(s1x)[F (S DD+ Eqs1x[F(S; D] + X H(xp) =: f(X) JiIMIN:Te)
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Provable mean field inference
[BBK 19]

Eqsix)[F S DD+ Eq(spo[F(S; D)+ 2 H(x) =: f (%) J{ZWIN:e)

Finding a good lower bound = max (PA-ELBO) w.r.t. q(S|x)

Highly non-convex, however,
Continuous DR-Submodular wrt

x®

Box constrained continuous
DR-submodular maximization problem:

max f(x), st.x € [0,1]"

Proposed a tight /2 approximation algorithm: DR-DoubleGreedy
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Validation of hyperparameters [BBK ‘19]

Given a hyperparameter choice,
PA objective measures how good the choice is.

PA objective is intractable = mean field inference
provides lower bound

4 Y . p(SID")p(S|D") log PA objective

Z (PA-ELBO) in last slide, provable

IEq(S|X) [F(S; D] + Eq(5|x) [F(S; D] + 3 H(x;) algorithm from continuous

DR-submodular maximization
applies

a8 ZS FEe— Two log partition functions,

upper bounds exist

7] [Djolonga et al. ‘14]
= 0gYexpF((S;D')
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Experiments
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Revenue maximization: The details

o

Wi;: influence strength of i to j 24 34

—

28

Can be viewed as a variant of the Influence- ,
and-Exploit strategy of [Hartline et al. ‘08]. 05

Influence stage: giving user i x; units of products for free, he becomes
an advocate with probability (independently from others)
1—qg*i, q € (0,1) is a constant

Exploit stage: If a set S of users advocate the product, the resulted revenue is
R(S). The expected revenue is:

Non-monotone

f(x) = Eg[R(S)] = Ziij Wif(l —q*)q" DR-submodular

T

For simplicity, let R(S) be the graph cut value of S
29
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Results on “Ego Facebook” graph (4039 users), from the SNAP dataset
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Guaranteed non- Binary

Decentralized/distributed

submodular submodularity training of GLMs
maximization .
H*BJ '18], [DLGBHJ ‘18
[BBKT "17] ! i ]
Continuous Principled algorithm validation

Submodularity: Provable
non-convex optimization
[BMBK 17], [BLKB “17]

Principled algorithm/model

Model selection for validation via continuous
GP regression submodular optimization
[*G*BFBB "17] [BBK “19]

for MAXCUT (unconstrained
submodular maximization)
[BGB '15], [BGB ‘16]

Parallel coordinate
descent algorithms
[BLLY "19]
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Thanks for your attention!




Backup pages
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Outlook

Sampling methods for estimating the PA criterion

Incorporate continuous submodularity as a prior
knowledge into modern NN architecture

o better generalization
e more interpretable

Explore submodularity over arbitrary conic lattices
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Local-Global relation: Monotone setting

Strong relation between locally stationary points & global optimum [BLKB “17]

Lemma: for any two points X, y, it holds,

(y —x)'Vfx) = fxXVY)+fXAY) —2f(x)

Let X be a stationary pointin ? 2> e.g.,, Vf(x) =0

takingy = x* > asb->f(a)<f(b)

2f(x)=f(xvx")+ f(xAX")
> f(x*) + f(xAXY)
> f(x") ® x

f® = 1)
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Generalized from submodularity of set functions
Ground setV = {1, ...,n} F(X):2V = Ry: utility, coverage, ..

VX, YSV, FX) + F) = FXuUY) + FXnY)

Equivalently, using binary vectors

vx, ye{0,1}", F(x) + F(y) > F(xvy) + FxAy)

V: coordinate-wise max. (JOIN)
A: coordinate-wise min. (MEET)

vx, y€la 0", f(X) + f(y) > f(xvy) + fExAy)

Continuous submodularity (can be generalized to arbitrary lattice [Topkis '78])

Supermodularity: f is supermodular iff —f is submodular
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MAP inference for DPPs [Gillenwater et al. “12]

DPP: determinantal point processes

Task: Select a subset of points that are
- a distribution over subsets that favors

diversity among items inside the subset
- originates from statistical physics [Macchi ‘75]

iraq iraqi killed baghdad arab marines deaths forces

social tax security democrats rove a

iccounts

. ow
e re——_

n nominees s

enate democrats judicial filibusters

JanIOS Janl28 FehI 17 Mar 09 Ma‘r 29 Ap-r 18 Maly 08 Ma;t 28 Jur;l‘.'
Softmax Extension for MAP inference:
1 .‘:..“: .:: "‘.'-.'zo -** ..‘.:.....
SE(x) = logdet[diag(x)(L —I) + I L TRID | el S el
n .‘%‘.ﬁ" - .:: * e. %
x € [0,1] B0 22 > .,
i ‘.. e ‘.a. ® e ®° ®
. O%""'.’:'& - ® e LA
. . . . . . » » Y [ ] ® o %o o L J e ®
: 1 X n kernel matrix, L; ;: similarity between i, j Al points independent sample
I: identity matrix, diag(x): diagonal matrix -
=.. .. ...: .. ‘.. . .' .. ‘.‘..‘. ‘.' .....
Proved continuous DR-submodularity = AT U T APSILALIC R
. . . .. e ® - .o.... e ®eo °
improved algorithm in both theory and I P S S e L %e o o
praCtice ot b e %’ @ e %’ ..o...
DPP sample DPP (approx) MAP
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Experiments on the Softmax Extension: Synthetic

SE(x) = logdet[diag(x)(L —I) + 1] Constraint: polytope

0.2 ]
TWO-PHASE FW | D cronken W | Both better than
015 T\ / -1 PROJECTED GRADIENT
\ /1 T~<
A / I N
0.1 r \\\\ //,/ --‘-::\\\ 1 i
SE(x) Foo Mo T e l ‘\\1 - TWO-PHASE FW (i)
_ . i » ~. ]
0.05 N i ,712' S performs better
ol v’ | ? | than
T PROJECTEDT 1
1 GRAD|ENT - 1 SHRUNKEN FW (E)
0.05 ' ' ' '
8 10 12 14 16
dimensionality of x
Lessons:

- Sometimes worst-case analysis does not reflect practical performance
- More properties of SE(X) can be explored to explain practical performance
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Real-world experiment: Matched
summarization with DPPs [Gillenwater et al. “12]

Given statements made by A & B, select a set of pairs s.t. the two items
within a pair are similar, but the set of pairs is diverse.

Al: No tax on interest, dividends, or capital gains. [tax]

A2: We're not going to have Sharia law applied in U.S. courts.

A3: 1 will ... grant a waiver from Obamacare to all 50 states. [Obamacare]
Ad: We're spending more on foreign aid than we ought to. [foreign aid]
A5: If you think what we did in Massachusetts and what President Obama
did are the same, boy, take a closer look. [Obamacare]

B1: 1 don’t believe in a zero capital gains tax rate. [tax]
B2: Manufacture in America, you aren’t going to pay any taxes. [tax]
B3: Zeroing out foreign aid ... that’s absolutely the wrong course. [foreign aid]

B5: Obamacare ... is going to blow a hole in the budget. [Obamacare]
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Real-world experiment: Matched
summarization with DPPs [Gillenwater et al. “12]

Given statements made by A & B, select a set of pairs s.t. the two items
within a pair are similar, but the set of pairs are diverse.

Al: No tax on interest, dividends, or capital gains. [tax]

A3: 1 will ... grant a waiver from Obamacare to all 50 states. [Obamacare]
Ad: We're spending more on foreign aid than we ought to. [foreign aid]

B1: 1 don’t believe in a zero capital gains tax rate. [tax]
B3: Zeroing out foreign aid ... that’s absolutely the wrong course. [foreign aid]

B5: Obamacare ... is going to blow a hole in the budget. [Obamacare]

Can be solved using DPP MAP inference with polytope constraints
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Results on max. Softmax Extension SE(X)

For Two-PHASE FW, objectives of the selected phase were plotted.
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