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Why do we need
continuous submodularity?

Motivations and applications



Motivation 1: Prior knowledge for modeling

happiness gained by having 
some quantity of (water, coke)

≥ 𝑓 𝜹 +
100 𝑚𝑙
100 𝑚𝑙

− 𝑓
100 𝑚𝑙
100 𝑚𝑙

Continuous DR-submodularity captures 
“Diminishing Returns (DR)” phenomenon

marginal gain of happiness by
having 𝜹 more (water, coke)
based on a large context

To model:
- preference
- influence
- satisfaction
- revenue
…

𝑓( )
𝜹 =

50 𝑚𝑙 water
50 𝑚𝑙 coke

4

𝑓 𝜹 +
1 𝑚𝑙
1 𝑚𝑙

− 𝑓
1 𝑚𝑙
1 𝑚𝑙



Motivation 2: A non-convex structure with
provable optimization
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Quadratic Program (QP):  

Non-convex/non-concave Continuous submodular😃→

∇2𝑓 = 𝐇, 𝐇 =
−1 −2
−2 −1

, eigenvalues: 
1
−3

𝑓 𝐱 =
1

2
𝐱T𝐇𝐱 + 𝐡T𝐱 + 𝑐, 𝐇 is symmetric



It arises in:

Mean field inference for
the posterior agreement

(PA) distribution
[BBK ‘19]

Product recommendation

Amazon baby registries. Left: furniture, right: toys

Image summarization

Social network mining 
[BMBK ‘17]
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Budget allocation

DPP MAP inference 
[Gillenwater et al. ’12] 

[BLKB ‘17]

Robust budget allocation 
[Staib et al. ‘17]

Risk-sensitive submodular
optimization [Wilder ‘17]

Revenue maximizationLovasz/Multilinear extensions of 
submodular set functions 

[Lovasz ‘83][Calinescu et al. ‘07]



Revenue maximization with continuous assignments
[Hartline et al. ’08, BMBK ‘17]

Given: connection graph

- Nodes: all users (all people on FB)

- Edges: influence strength between users

opinion leader

3.4

2.6

1.4

0.5

How to model expected revenue: 𝑓(𝐱)?

Revenue 𝑓 𝐱 satisfies 
DR property:   

Viral marketing: give some users a certain 
amount of free products, to trigger further adoptions

𝐱 ∈ ℝ+
𝑛 :  free trial time for 𝑛 users

giving more trial time

will hurt influence of  

A

7

Task: advertise an innovation/product based on a social connection graph 
→ max. expected revenue 

2.4

B

C

D



How to characterize continuous submodularity?
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Definitions and characterizations



Three orders of characterizations [BMBK ‘17]
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∨: coordinate-wise max.   

∧: coordinate-wise min.  

𝐱 𝐲

1

2

3

𝐱 ∨ 𝐲

2

2

4

𝐱 ∧ 𝐲

1

0

3

2

0

4

Continuous submodular 𝑓 Convex 𝑔, 𝜆 ∈ [0,1]

0th order
𝜆𝑔 𝐱 + 1 − 𝜆 𝑔 𝐲
≥ 𝑔(𝜆𝐱 + 1 − 𝜆 𝐲)

1st order 𝑔 𝐲 ≥ 𝑔 𝐱 + ∇𝑔 𝐱 , 𝐲 − 𝐱

2nd order ∇2𝑔 𝐱 ≽ 0 (PSD)

𝑓 𝐱 + 𝑓 𝐲 ≥ 𝑓 𝐱 ∨ 𝐲 + 𝑓(𝐱 ∧ 𝐲)

𝜕2𝑓 𝐱

𝜕𝑥𝑖𝜕𝑥𝑗
≤ 0, ∀𝑖 ≠ 𝑗

∇𝑓 ∙ : weak antitone mapping

not
care

≤ 0 ≤ 0 ≤ 0

≤ 0 not
care

≤ 0 ≤ 0

≤ 0 ≤ 0 not
care

≤ 0

≤ 0 ≤ 0 ≤ 0 not
care

Hessian

antitone mapping: 𝐱 ≲ 𝐲 implies ∇𝑓 𝐱 ≳ ∇𝑓 𝐲

coordinate-wise less equal



Continuous submodularity: Repulsion among
different dimensions

10

does not say anything about
a single coordinate! 𝜕2𝑓 𝐱

𝜕𝑥𝑖𝜕𝑥𝑗
≤ 0, ∀𝑖 ≠ 𝑗

Often, objectives have some structure along a single coordinate

Arbitrary behavior along a single coordinate

Hessian

not
care

≤ 0 ≤ 0 ≤ 0

≤ 0 not
care

≤ 0 ≤ 0

≤ 0 ≤ 0 not
care

≤ 0

≤ 0 ≤ 0 ≤ 0 not
care



Submodularity + Concavity along any single coordinate

A 2-D Softmax extension [Gillenwater et al. ‘12]
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= Continuous DR-submodularity



Continuous Submodular Continuous DR-Submodular

0th order 𝑓 𝐱 + 𝑓 𝐲 ≥ 𝑓 𝐱 ∨ 𝐲 + 𝑓(𝐱 ∧ 𝐲)
𝑑 𝐱 + 𝑑 𝐲 ≥ 𝑑 𝐱 ∨ 𝐲 + 𝑑(𝐱 ∧ 𝐲)

& coordinate-wise concave

1st order ∇𝑓 ∙ : weak antitone mapping ∇𝑑(∙): antitone mapping

2nd order
𝜕2𝑓 𝐱

𝜕𝑥𝑖𝜕𝑥𝑗
≤ 0, ∀𝑖 ≠ 𝑗

𝜕2𝑑 𝐱

𝜕𝑥𝑖𝜕𝑥𝑗
≤ 0, ∀𝑖, 𝑗
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Two classes of continuous
submodular functions [BMBK ‘17]

not
care

≤ 0 ≤ 0 ≤ 0

≤ 0 not
care

≤ 0 ≤ 0

≤ 0 ≤ 0 not
care

≤ 0

≤ 0 ≤ 0 ≤ 0 not
care

≤ 0 ≤ 0 ≤ 0 ≤ 0

≤ 0 ≤ 0 ≤ 0 ≤ 0

≤ 0 ≤ 0 ≤ 0 ≤ 0

≤ 0 ≤ 0 ≤ 0 ≤ 0

DR-
submodular

Submodular
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How to maximize continuous
DR-submodular functions?

Provable algorithms



DR-submodular maximization: Setup & hardness

max
𝐱∈𝒫

𝑓(𝐱)

𝒫 is convex
& down-closed:

14

A convex set with a
lower bound 𝐮, s.t.

𝒫
𝐮

ഥ𝐮

Hardness & Inapproximability: The above problem is NP-hard.
When 𝒫 is a unit hypercube (𝒫= 0, 1 n), there is no poly. time
(1/2 + ε)−approximation algorithm for any ε > 0 unless RP=NP.

½ -approximation: finding a solution 𝐱 s.t. 𝑓 𝐱 ≥ 1

2
𝑓(𝐱∗)

𝐲

∀𝐲 ∈ 𝒫, the hyperrectangle
[𝐮, 𝐲] ⊆ 𝒫



A summary of our theoretical results

Mathematical characterizations 
of submodularity over integer & 
continuous domains [BMBK ‘17]

0th order, 1st order, 2nd order, 
antitone gradient etc

Monotone DR-submodular max. 
with down-closed convex constraints

[BMBK ‘17]

- Inapproximability: 1 − 1/𝑒
- Optimal algorithm: A Frank-Wolfe Variant 

Non-monotone DR-submodular max. 
with box constraints

[BBK ‘19]

- Inapproximability: 1/2
- Optimal algorithm: DR-DoubleGreedy

Non-monotone DR-submodular max. 
with down-closed convex constraints

[BLKB ‘17]

- Inapproximability: Open problem
- Best algorithm so far: Shrunken Frank-Wolfe, 
1/𝑒 guarantee

15

𝐚 ≲ 𝐛→ 𝑓 𝐚 ≤ 𝑓(𝐛)
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Non-monotone DR-submodular max. 
with down-closed convex constraints

[BLKB ‘17]

- Inapproximability: Open problem
- Best algorithm so far: Shrunken Frank-Wolfe, 
1/𝑒 guarantee



Local-Global relation
[BLKB ‘17]

- Let 𝐱 be a stationary point in 𝒫
- 𝒬 ≔ 𝒫 ∩ 𝐲 𝐲 ≲ ഥ𝐮 − 𝐱}
- Let 𝐳 be the a stationary point in 𝒬

Can be generalized to approximately
stationary points

max
𝐱∈𝒫

𝑓(𝐱)

𝒬 ≔ 𝒫 ∩ 𝐲 𝐲 ≲ ഥ𝐮 − 𝐱}

𝒫

ഥ𝐮

𝐱
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ഥ𝐮 − 𝐱

𝐳

Theorem:

max 𝑓 𝐱 , 𝑓 𝐳 ≥ 𝟏
𝟒 𝑓 𝐱∗

𝟎



Local-Global relation → Two-Phase algorithm

Two-Phase algorithm
𝐱 ← Non-convex Solver(𝒫)   // Phase I on 𝒫

𝒬 ← 𝒫 ∩ 𝐲 𝐲 ≲ ഥ𝐮 − 𝐱}
𝐳 ← Non-convex Solver(𝒬)   // Phase II on 𝒬

Output: argmax 𝑓 𝐱 , 𝑓(𝐳)

1/4 Guarantee

- Can use existing non-convex solvers to find (approximately)
stationary points (used non-convex Frank-Wolfe in the
experiments)

- Performs surprisingly good in experiments

18



Key property for a second algorithm

19

Lemma: A DR-submodular 𝑓 is concave along 
any non-negative direction.

Cross-section in a positive directionCross-section in a random direction



Shrunken Frank-Wolfe: Follow concavity
[BLKB ‘17]
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Shrunken FW 
Choose initializer 𝐱 ∈ 𝒫
In each iteration do:

𝐝 ← argmax𝐯∈𝒫, 𝐯≲ ഥ𝐮−𝐱 𝐯, ∇𝑓 𝐱
𝐱 ← 𝐱 + γ𝐝

Return 𝐱

Theorem: 𝑓 𝐱𝐾 ≥
1

𝒆
𝑓 𝐱∗ −

𝐿𝐷2

2𝐾

𝐿: Lipschitz gradient, 𝐷: diameter of 𝒫

Can make 𝐝 to be a 
positive direction
because:

max
𝐱∈𝒫

𝑓(𝐱)

𝒫

- 𝐝 is from 𝒫
- can always move 𝒫

to the positive orthant
without changing structure
of the objective
(since 𝒫 is down-closed)

Shrunken operator
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Algorithm validation through the
posterior agreement (PA) framework

Resulted in continuous DR-submodular
maximization problems [BBK ‘19]



Motivation of posterior agreement
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Product recommendation

Ground set 𝒱: 𝑛 products, 𝑛 usually large

Which subset 𝑆 ⊆ 𝒱 to recommend?  

𝐹(𝑆): a parameterized submodular utility function
e.g., a deep submodular neural net [Bilmes et al. ‘17]

Noisy training data 𝐷: a collection of chosen subsets by the users

- Learning: learn parameters and hyperparameters (architecture, stopping time
& learning rate of SGD etc) of 𝐹(𝑆)

- Inference: sample a subset from the distribution induced by 𝐹(𝑆)

…

⠇
𝐹(𝑆)
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How to conduct inference and hyperparameter selection
with noisy observations?

→ Can be achieved through the posterior agreement (PA)
framework



Two-instance scenario, PA distribution and PA objective
[Buhmann ‘10, BGB ’15, BGB ‘16]
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two noisy
datasets

PA distribution:

𝑝PA 𝑆 ∝ 𝑝 𝑆 𝐷′ 𝑝 𝑆 𝐷′′ ∝ exp[ 𝐹(𝑆;𝐷′) + (𝐹(𝑆; 𝐷′′) ]

PA objective: measure the agreement between the two posteriors.
It is verified in an information-theoretic manner [BGB ’16].

σ𝑆 𝑝 𝑆 𝐷′ 𝑝 𝑆 𝐷′′

𝐷′

𝐷′′

𝐹(𝑆; 𝐷′)

𝐹(𝑆; 𝐷′′)

→

→

𝑝 𝑆 𝐷′ ∝ exp(𝐹(𝑆; 𝐷′))

𝑝 𝑆 𝐷′′ ∝ exp(𝐹(𝑆; 𝐷′′))

→

→

posteriors described by
probabilistic log-submodular
models [Djolonga et al. ‘14]

submodular
utility functions

hyperparameter
choice

used for inference

used for hyperparameter validation



Inference via mean field approximation
[BBK ‘19]
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Inference: sample from the PA distribution 𝑝PA 𝑆 → intractable

Mean field inference: approximate 𝑝PA 𝑆 by a factorized surrogate distribution:
𝑞 𝑆 𝐱 ∶= ς𝑖∈ 𝑆 𝑥𝑖ς𝑗∉ 𝑆(1 − 𝑥𝑗), 𝐱 ∈ 0, 1 𝑛, then sample from 𝑞 𝑆 𝐱

𝔼𝑞 𝑆 𝐱 𝐹(𝑆;𝐷′) + 𝔼𝑞 𝑆 𝐱 𝐹(𝑆; 𝐷′′) + σ𝑖𝐻 𝑥𝑖 =: 𝑓(𝐱) (PA-ELBO)

log ZPA = logσ𝑆 exp[𝐹(𝑆; 𝐷
′) + (𝐹(𝑆; 𝐷′′)] (PA Evidence)

≥



Provable mean field inference
[BBK ‘19]

26

𝔼𝑞 𝑆 𝐱 𝐹(𝑆;𝐷′) + 𝔼𝑞 𝑆 𝐱 𝐹(𝑆; 𝐷′′) + σ𝑖𝐻 𝑥𝑖 =: 𝑓(𝐱) (PA-ELBO)

Highly non-convex, however,
Continuous DR-Submodular wrt

𝐱😀

max 𝑓(𝐱), s.t. 𝐱 ∈ 0, 1 𝑛

Proposed a tight ½ approximation algorithm: DR-DoubleGreedy

Finding a good lower bound → max (PA-ELBO) w.r.t. 𝑞 𝑆 𝐱

Box constrained continuous
DR-submodular maximization problem:



Validation of hyperparameters [BBK ‘19]
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Given a hyperparameter choice,
PA objective measures how good the choice is. 

log

PA objective is intractable →mean field inference
provides lower bound

(PA-ELBO) in last slide, provable
algorithm from continuous 
DR-submodular maximization
applies

Two log partition functions, 
upper bounds exist 
[Djolonga et al. ‘14]

𝔼𝑞 𝑆 𝐱 𝐹(𝑆; 𝐷′) + 𝔼𝑞 𝑆 𝐱 𝐹(𝑆; 𝐷′′) + σ𝑖𝐻(𝑥𝑖)

logσ𝑆 exp(𝐹(S; D′))

logσ𝑆 exp𝐹((𝑆; 𝐷
′′))

σ𝑆 𝑝 𝑆 𝐷′ 𝑝 𝑆 𝐷′′ log PA objective

≥

−

−
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Experiments

Revenue maximization



Revenue maximization: The details

29

Can be viewed as a variant of the Influence-
and-Exploit strategy of [Hartline et al. ‘08].

Influence stage: giving user 𝑖 𝑥𝑖 units of products for free, he becomes
an advocate with probability (independently from others)
1 − 𝑞𝑥𝑖, 𝑞 ∈ 0,1 is a constant

Exploit stage: If a set 𝑆 of users advocate the product, the resulted revenue is
𝑅 𝑆 . The expected revenue is:

𝑊𝑖𝑗: influence strength of 𝑖 to 𝑗

𝑓 𝐱 = 𝔼𝑆 𝑅 𝑆

For simplicity, let 𝑅 𝑆 be the graph cut value of 𝑆

σ𝑖≠𝑗𝑊𝑖𝑗 1 − 𝑞𝑥𝑖 𝑞𝑥𝑗=
Non-monotone
DR-submodular
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Shrunken FW
Two-phase FW

PGA (1/𝐿) 

Shrunken FW 1/e slow in the beginning, reach
high function values

Two-phase FW 1/4 converge very fast,
reach high function values

PGA (1/𝐿) X performance highly
depends on 𝐿

Results on ”Ego Facebook” graph (4039 users), from the SNAP dataset

Iteration number 𝑘



Continuous
Submodularity: Provable
non-convex optimization
[BMBK ‘17], [BLKB ‘17]
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Binary
submodularity

Principled algorithm/model
validation via continuous
submodular optimization

[BBK ‘19]

Principled algorithm validation
for MAXCUT (unconstrained
submodular maximization)

[BGB ’15], [BGB ‘16]

Decentralized/distributed
training of  GLMs

[*H*BJ ’18], [DLGBHJ ‘18]

Parallel coordinate
descent algorithms

[BLLY ’19]

Guaranteed non-
submodular

maximization

[BBKT ’17]

Model selection for
GP regression

[*G*BFBB ’17]



Thanks for your attention!
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Backup pages
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Outlook

Sampling methods for estimating the PA criterion

Incorporate continuous submodularity as a prior 
knowledge into modern NN architecture

better generalization

more interpretable

Explore submodularity over arbitrary conic lattices

34
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Local-Global relation: Monotone setting
Strong relation between locally stationary points & global optimum [BLKB ‘17]

𝑓 𝐱 ≥ 𝟏
𝟐 𝑓 𝐱∗

Lemma: for any two points 𝐱, 𝐲,  it holds, 

𝐲 − 𝐱 T𝛻𝑓 𝐱 ≥ 𝑓 𝐱 ∨ 𝐲 + 𝑓 𝐱 ∧ 𝐲 − 𝟐 𝑓(𝐱)

𝑓 𝐱 ∧ 𝐱∗ ≥ 0

Let 𝐱 be a stationary point in 𝒫→ e.g., 𝛻𝑓 𝐱 = 𝟎

𝒫
𝐱

𝟐 𝑓 𝐱 ≥ 𝑓 𝐱 ∨ 𝐱∗ + 𝑓 𝐱 ∧ 𝐱∗

𝐱 ∨ 𝐱∗ ≳ 𝐱∗

max
𝐱∈𝒫

𝑓(𝐱)

taking 𝐲 = 𝐱∗→

≥ 𝑓 𝐱∗ + 𝑓 𝐱 ∧ 𝐱∗

≥ 𝑓 𝐱∗

𝐚 ≲ 𝐛→ 𝑓 𝐚 ≤ 𝑓(𝐛)



Generalized from submodularity of set functions
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Supermodularity: 𝑓 is supermodular iff −𝑓 is submodular

𝐹 𝑋 + 𝐹 𝑌 ≥ 𝐹 𝑋 ∪ 𝑌 + 𝐹 𝑋 ∩ 𝑌∀ 𝑋, 𝑌 ⊆ 𝒱,

𝑓 𝐱 + 𝑓 𝐲 ≥ 𝑓 𝐱 ∨ 𝐲 + 𝑓(𝐱 ∧ 𝐲)

𝐹 𝐱 + 𝐹 𝐲 ≥ 𝐹 𝐱 ∨ 𝐲 + 𝐹 𝐱 ∧ 𝐲∀ 𝐱, 𝐲 ∈ 0, 1 𝑛,

∨: coordinate-wise max. (JOIN) 
∧: coordinate-wise min. (MEET)

Equivalently, using binary vectors

∀ 𝐱, 𝐲 ∈ [𝑎, 𝑏]𝑛,

Continuous submodularity (can be generalized to arbitrary lattice [Topkis ’78])

(0,0,0)

(1,1,1)

Ground set 𝒱 = {1,… , 𝑛} 𝐹 𝑋 : 2𝒱 ↦ ℝ+: utility, coverage,  …



MAP inference for DPPs [Gillenwater et al. ‘12]
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DPP: determinantal point processes

Softmax Extension for MAP inference:

SE 𝐱 = log det[diag 𝐱 𝐋 − 𝐈 + 𝐈]
𝐱 ∈ 0, 1 𝑛 (𝑥𝑖 → prob. of selecting item 𝑖)

𝐋: 𝑛 × 𝑛 kernel matrix, 𝐋𝑖𝑗: similarity between 𝑖, 𝑗

𝐈: identity matrix, diag 𝐱 : diagonal matrix

Proved continuous DR-submodularity→
improved algorithm in both theory and 
practice 

Task: Select a subset of points that are diverse

- a distribution over subsets that favors 
diversity among items inside the subset

- originates from statistical physics [Macchi ‘75]
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Experiments on the Softmax Extension: Synthetic

38

SE 𝐱 = log det[diag 𝐱 𝐋 − 𝐈 + 𝐈]

TWO-PHASE FW SHRUNKEN FW

PROJECTED

GRADIENT

Constraint: polytope

- TWO-PHASE FW (1
4
)

performs better 
than 

SHRUNKEN FW (1
𝑒
)

- Both better than 
PROJECTED GRADIENT

Lessons:

- Sometimes worst-case analysis does not reflect practical performance
- More properties of SE 𝐱 can be explored to explain practical performance

SE 𝐱

dimensionality of 𝐱



Real-world experiment: Matched
summarization with DPPs [Gillenwater et al. ‘12]

Given statements made by A & B, select a set of pairs s.t. the two items
within a pair are similar, but the set of pairs is diverse.

39

A1: No tax on interest, dividends, or capital gains. [tax]
A2: We’re not going to have Sharia law applied in U.S. courts.
A3: I will ... grant a waiver from Obamacare to all 50 states. [Obamacare]
A4: We’re spending more on foreign aid than we ought to. [foreign aid]
A5: If you think what we did in Massachusetts and what President Obama 
did are the same, boy, take a closer look. [Obamacare]

B1: I don’t believe in a zero capital gains tax rate. [tax]
B2: Manufacture in America, you aren’t going to pay any taxes. [tax]
B3: Zeroing out foreign aid ... that’s absolutely the wrong course. [foreign aid]
B4: I voted against ethanol subsidies my entire time in Congress.
B5: Obamacare ... is going to blow a hole in the budget. [Obamacare]



Real-world experiment: Matched
summarization with DPPs [Gillenwater et al. ‘12]

Given statements made by A & B, select a set of pairs s.t. the two items
within a pair are similar, but the set of pairs are diverse.
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A1: No tax on interest, dividends, or capital gains. [tax]

A3: I will ... grant a waiver from Obamacare to all 50 states. [Obamacare]
A4: We’re spending more on foreign aid than we ought to. [foreign aid]

B1: I don’t believe in a zero capital gains tax rate. [tax]

B3: Zeroing out foreign aid ... that’s absolutely the wrong course. [foreign aid]

B5: Obamacare ... is going to blow a hole in the budget. [Obamacare]

Can be solved using DPP MAP inference with polytope constraints

Can compare opinions of
politicians on same topics



Results on max. Softmax Extension SE 𝐱

41

For TWO-PHASE FW, objectives of the selected phase were plotted.
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