
Information-Theoretic Analysis of
MaxCut Algorithms

Yatao Bian, Alexey Gronskiy and Joachim M. Buhmann
Department of Computer Science, ETH Zurich

{ybian, alexeygr, jbuhmann}@inf.ethz.ch

July 12, 2016

Abstract

NP-hard combinatorial optimization algorithms are often characterized by their
approximation ratios. In real world applications, the resilience of algorithms to
input fluctuations and to modeling errors pose important robustness requirements.
Motivated by this problem, we propose an information-theoretic algorithmic regu-
larization and validation strategy based on posterior agreement, and further theo-
retically justify it by presenting the “coding by posterior” framework. The strategy
regularizes algorithms and ranks them according to the informativeness of their out-
put given noisy input. To illustrate this strategy, we develop methods to evaluate
the posterior distribution of the Goemans-Williamson’s MaxCut algorithm using
semidefinite programming relaxation (MaxCut-SDP by Goemans and Williamson
(1995)). Experimental comparison with representative greedy MaxCut algorithms
shows that MaxCut-SDP with the best known approximation ratio generalizes
worse than greedy MaxCut algorithms under high noise level.

1. Introduction

Algorithms are usually characterized by time and space complexity in the worst-case
setting, and for specific instance distributions, in the average case. The robustness
of an algorithm to input fluctuations is rarely investigated although such a prop-
erty might often be indispensable in applications. Taking the MaxCut problem for
example, in practice, instead of having the graph G as input to recover the max-
imal cut, one usually only have access to multiple noisy observations of the graph
G. Assuming for simplicity, there are two noisy observations of the underlying “mas-
ter” graph G: G′ and G′′, and we want to recover the maximal cut with respect
to G. We call this setting the “two-instance” scenario, and the ability of an algo-
rithm to recover the true solutions given only noisy observations is closed related to
the robustness/informativeness of the algorithm. According to Buhmann (2010), the
informativeness of algorithms sensitively depends on the input distributions, which
controls the precision of the output given the input uncertainty.

For an algorithm A to survive in this two-instance scenario, e.g., the MaxCut-
SDP (Goemans and Williamson, 1995), we propose a general information-theoretic
regularization and validation strategy, which is based on a provable analogue of in-
formation content for algorithms. Classical algorithms usually search for a unique
or a randomized solution in the hypothesis class. Input noise often renders such al-
gorithmic solutions highly unstable. Therefore, we require an algorithm to return
a posterior distribution of solutions given the noisy input. Such a posterior should
concentrate on few solutions but the posterior must be stable for equally likely in-
puts. We interpret this tradeoff between precise localization in the hypothesis class
and stability of posteriors as the generalization property of an algorithm. Under this
strategy, an algorithm should stop early to recover the stable solutions (posterior
distribution of solutions).

It is well-known that when training machine learning models, e.g., training neu-
ral network using the stochastic gradient descent algorithm, one should stop the
algorithm early to recover generalizable models, which is called the “early-stopping”
strategy (Caruana et al., 2001). With empirical success, few theory has been pro-
posed for this well-utilized strategy. By simple analogue between the generalizable
solutions and machine learning models, this work also gives an information-theoretic
verification of this “early-stopping” strategy.

Though we use MaxCut algorithms as an illustrating example in this work, it is
noteworthy that the strategy applies generally to any algorithms in the two-instance
scenario. Previously, generalization of algorithms as a selection principle has been
demonstrated for minimum spanning tree algorithms (Gronskiy and Buhmann, 2014)
and data clustering (Buhmann, 2010).

1

1.1 MaxCut as an exemplary problem

Given an undirected graph G = (V,E) with a vertex set V = {1, · · · , n} and
an edge set E with non-negative weights wij,∀(i, j) ∈ E, MaxCut determines a
cut c := (S, S̄) of the vertex set V = S ∪ S̄, S ∩ S̄ = ∅ such that the cut value
cut(c) :=

∑
i∈S
∑

j∈S̄ wij is maximal. MaxCut is a prototypical case of an uncon-
strained submodular maximization problem, and it is utilized in various applications,
such as semisupervised learning (Wang et al., 2013) and social networks (Agrawal
et al., 2003). Bian et al. (2015) has investigated the robustness of greedy MaxCut
algorithms based on the “approximation set coding” framework (Buhmann, 2010;
Gronskiy and Buhmann, 2014), the methodology used there can not handle the con-
tinuous MaxCut algorithms, e.g., the MaxCut-SDP (Goemans and Williamson,
1995). This work aims to analyze the generalization performance of non-greedy, con-
tinuous MaxCut algorithm based on strategy derived from a general framework
called “coding by posterior”.

1.2 Algorithm analysis by algorithmic information content

We investigate the generalization ability of an algorithm A under the two-instance
scenario. Assume there are two noisy instances G′, G′′ drawn from the same un-
derlying distribution D. The algorithm then calculates a sequence of posteriors
{PA

t (c|G′)}, {PA
t (c|G′′)} as a function of time t, c is the solution in the hypoth-

esis/solution space C. The posterior agreement is defined to measure the overlap
between the two posteriors at time t,

kA
t (G′, G′′) :=

∑
c∈C

PA
t (c|G′)PA

t (c|G′′) . (posterior agreement) (1)

We define the information content of an algorithm A as the maximal temporal in-
formation content IA

t at time t:

IA (G′;G′′) := max
t
IA
t (G′;G′′) = max

t
EG′,G′′

[
log
(
|C|kA

t (G′, G′′)
)]
. (2)

It generalizes the algorithmic information content in Gronskiy and Buhmann (2014).
IA
t measures how much information is extracted by A at time t from the input dis-

tribution that is relevant to the output distribution, thus reflecting the generalization
ability. It naturally suggests the following algorithmic regularization and validation
strategy based on posterior agreement:

• Regularize an algorithm A by stopping it at the optimal time, which is de-
fined as t∗ = arg maxt EG′,G′′ [kA

t (G′, G′′)]. It corresponds to the early-stopping
strategy;

• Validation: Rank two algorithms A1 and A2 by comparing IA1 and IA2 under
a specific input distribution D.

2

The rest of this paper is organized as: Section 2 verifies definition of the algo-
rithmic information content (Equation 2) by detailing and proving the “coding by
posterior” framework; Section 3 interprets the MaxCut-SDP algorithm; Section 4
describes the provable methods to evaluate MaxCut-SDP posteriors; Section 5 con-
tains experimental results; Section 6 discusses and concludes the paper.

2. The coding by posterior framework

We introduce the “coding by posterior” framework in this section, which is based on
an analogue to the noisy communication channel in information theory.

We denote as G, G′, G′′ ∈ G different data instances generated from the underlying
distribution D, e.g., G may be a graph instance for the MaxCut problem. Often, a
computational problem is associated with some cost function R(c,G), which measures
how well a hypothesis c in the hypothesis space C will solve the problem on input
G. An algorithm A maps the input space to the hypothesis space A : G → C. We
introduce parameters θ ∈ Θ to enumerate a set of algorithms. In optimization for
example, θ might denote the approximation precision. In general, we assume that
algorithm A assigns non-negative weights wθ(c,G) to all hypotheses dependent on
the input and the parameters, i.e.,

w : C × G ×Θ→ [0,+∞), (c,G,θ) 7→ wθ(c,G) . (3)

Gibbs weights wβ(c,G) = exp
(
−βR(c,G)

)
, for example, rank different hypotheses

according to how well they solve the problem in terms of costs R(c,G).
Such a weighting of hypotheses given data can be interpreted as a posterior dis-

tribution Pθ(c|G) induced by algorithm A , and is defined as

Pθ(c|G) := wθ(c,G)/
∑

c′∈C
wθ(c′, G), ∀c ∈ C . (4)

For example, if we choose an indicator function as weights

wθ(c,G) = 1
{
R(c,G) ≤ R(c⊥, G) + γ(θ)

}
, (5)

where γ(θ) denotes a precision value determined by a specific A and the empirical risk
minimizer c⊥(G) = arg minc∈CR(c,G) centers an “approximation set” of size γ(θ) in
C. In this manner we can recover the “approximation set coding” in Buhmann (2010).

The posterior Pθ(c|G) effectively partitions the hypothesis class into statistically
equivalent solutions with high weight values and discards hypotheses with vanishing
weights. Pθ(c|G) plays the role of a codebook vector with the associated Voronoi cell.
To generate alternative posteriors for a coding protocol we have to use the given data
G and have to transform the mapping from G to C. Such transformations should not
change the measurements represented by G but the algorithmic mapping. Given data
G and algorithm A with posterior Pθ(c|G), we define the transformation set T as a
set of mappings τ : G → G s.t. the following two conditions are satisfied,

3

1. A (τ ◦G), τ ∈ T generates an “approximately uniform cover” of the hypothesis

space C, i.e.,
∑

τ∈T Pθ(c|τ ◦G) ∈
[|T|
|C| (1− ρ), |T||C| (1 + ρ)

]
, for 0 < ρ < 1;

2. For every transformation τ ∈ T there exists an associated transformation τC

such that wθ(c, τ ◦G) = wθ(τC ◦ c,G).

Given a posterior and transformations, we can define a virtual communication
scenario. It requires a sender S, a receiver R, and a problem generator PG as a
noisy channel between S and R. Sender and receiver agree on algorithm A and its
induced posterior.

2.1 Code book generation

The communication code is generated by the procedure:

1) Sender S and receiver R obtain the sample set G′ from the problem generator
PG.

2) Sender S and receiver R calculate the posterior Pθ(c|G′).

3) A set of transformations T = {τ1, · · · , τM} ⊆ T is generated uniformly with asso-
ciated posteriors Pθ(c|τj ◦G′), 1 ≤ j ≤M .

4) S and R agree on a transformation set T and posteriors Pθ(c|τj ◦G′), 1 ≤ j ≤M .

The posteriors Pθ(c|τj ◦G′), τj ∈ T play the role of codebook vectors in Shannon’s
theory of communication.

2.2 Communication protocol

1) The sender S selects a transformation τs ∈ T as message and sends it to the
problem generator PG.

2) PG generates the test sample set G′′ and applies the transformation τs to G′′,
yielding G̃ := τs ◦G′′.

3) PG sends G̃ to R without revealing τs.

4) R calculates the posterior Pθ(c|G̃).

5) R estimates the message τs by using the decoding rule:

τ̂ = arg max
τ∈T

Ec∼Pθ(c|τ◦G′)Pθ(c|τs ◦G′′) = arg max
τ∈T

∑
c∈C

Pθ(c|τ ◦G′)Pθ(c|G̃) (6)

4

2.3 Error analysis of the virtual communication protocol

The probability of a communication error amounts to

P(τ̂ 6= τs|τs) = P
(

max
τj∈T\τs

EP(c|τj◦G′)[P(c|G̃)] ≥ EP(c|τs◦G′)[P(c|G̃)]
)

(a)

≤
∑

τj∈T\τs

P
(
EP(c|τj◦G′)[P(c|G̃)] ≥ EP(c|G′)[P(c|G′′)]

)
(7)

(b)

≤
∑

τj∈T\τs

EG′,G′′
EτjEP(c|τj◦G′)[P(c|G̃)]

EP(c|G′)[P(c|G′′)]
,

by applying the union bound (a) and Markov’s inequality (b).
Abbreviating ZT := EτjEP(c|τj◦G′)[P(c|G̃)], we derive

ZT = EτjEP(c|τj◦G′)P(c|G̃) = Eτj
∑
c∈C

P(c|τj ◦G′)P(c|G̃)

=
∑
c∈C

P(c|G̃)EτjP(c|τj ◦G′) =
∑
τj∈T

P(τ j)P(c|τj ◦G) ≤ (1 + ρ)|C|−1 (8)

where Equation 8 arises from the approximately uniform coverage of C by the poste-
riors, i.e.,

∑
τ∈T P(c|τ ◦ G) ∈

[|T|
|C| (1 − ρ), |T||C| (1 + ρ

)
] and P(τ) = 1/|T|. Substituting

Equation 8 into Equation 7 we derive the error bound

P(τ̂ 6= τs|τs) ≤
∑

τj∈T\τs

EG′,G′′
[(|C|

1+ρ
EP(c|G′)[P(c|G′′)]

)−1
]

= (M − 1)EG′,G′′
[(|C|

1+ρ
k(G′, G′′)

)−1
]

(9)

≤MEG′,G′′
[
exp
(
− log(|C|

1+ρ
k(G′, G′′))

)]
. (10)

Where Equation 9 comes from the definition of posterior agreement in Equation 1.
We analyze Î := log

(
|C|k(G′, G′′)

)
in Equation 10 at its expected value

I := EG′,G′′
[
log
(
|C|k(G′, G′′)

)]
. (11)

To control the fluctuations ∆G′,G′′ := Î − I, we assume that for all ε > 0, δ > 0, there
exists n0 ∈ N s.t. for all n > n0

P (|∆G′,G′′ | ≥ εI) < δ . (12)

This assumption of asymptotically vanishing fluctuations yields the following upper
bound

EG′,G′′
[
exp(−Î)

]
≤ exp

(
−I(1− ε)

)
. (13)

5

Algorithm 1: MaxCut-SDP (Goemans and Williamson, 1995)

Input: undirected graph G = (V,E) with non-negative weights w
Output: cut c = (S, S̄)

1 solve (R), obtaining an optimal set of vectors vi ∈ Sn−1;
2 let r be a vector uniformly distributed on Sn−1;
3 return S := {i | vi · r ≥ 0,∀i ∈ V } and S̄

Since ε can be chosen arbitrarily small in the asymptotic limit, the error probability
is bounded with high probability by

P(τ̂ 6= τs|τs) ≤ exp
(
−I + log(M(1 + ρ))

)
. (14)

For I exceeding the effective total rate log(M(1+ρ)), the error vanishes asymptotically
since I = O(log |C|). This bound suggests that we should maximize I (Equation 11)
when searching for informative algorithms, thus verifying our definition of algorithmic
information content in Equation 2.

2.4 Connection to classical mutual information

We analyse the classical mutual information I(G′;G′′) by expanding the joint distri-
bution P(G′, G′′) with cut variables c ∈ C and transformations τ ∈ T :

I(G′;G′′) = EG′,G′′ log
P(G′, G′′)

P(G′)P(G′′)
= EG′,G′′ log

∑
c

∑
τ P(G′, G′′|c, τ)P(c, τ)

P(G′)P(G′′)
(15)

The conditional distribution P(G′, G′′|c, τ) of G′, G′′ factorizes due to conditioning on
c and τ ,

P(G′, G′′|c, τ)=P(G′|c, τ)P(G′′|c, τ)
(a)
=

P(c|G′, τ)

P(c|τ)
P(G′|τ)

P(c|G′′, τ)

P(c|τ)
P(G′′|τ), (16)

since G′, G′′ are drawn i.i.d. from the same distribution P(τs◦G). The transformation
τ plays the role of a latent variable. Step (a) applies the Bayes rule twice. Substitute
Equation 16 into 15 we get (detailed derivation in Appendix A)

I(G′;G′′) = EG′,G′′ log
∑

c

[
P(c|G′)P(c|G′′)/P(c)

]
≤ EG′,G′′ log |C|

∑
c
P(c|G′)P(c|G′′) = I(G′;G′′).

With the uniform distribution P(c) = |C|−1, I(G′;G′′) is maximized and we reach the
algorithmic information content in Equation 2.

3. MaxCut algorithm using SDP relaxation

In this section we give a geometric interpretation of Goemans-Williamson’s Max-
Cut algorithm using semidefinite programming relaxation (Goemans and Williamson

6

(1995), abbreviated as MaxCut-SDP), which will facilitate deriving methods to cal-
culate the posterior of cuts. Algorithm 1 summarizes the MaxCut-SDP algorithm:
It rounds the solution to a non-linear programming relaxation, which can be inter-
preted as SDP, then it solves the SDP using standard algorithms, such as interior-
point methods (Helmberg et al., 1996), bundle method or block coordinate descent
(Waldspurger et al., 2015). Concretely, MaxCut is formulated as the NP-complete
integer program:

max 1
2

∑
i<j wij(1− vivj)

(Q) s.t. vi ∈ {−1, 1} ∀i ∈ V (17)

then (Q) is relaxed to define the following non-linear problem,

max 1
2

∑
i<j wij(1− vi · vj)

(R) s.t. vi ∈ Sn−1 ∀i ∈ V (18)

where Sn−1 is the (n− 1)-dimensional unit sphere, i.e., Sn−1 = {v ∈ Rn | ‖v‖2 = 1}.
Arrange the n vectors v1, · · · ,vn to be the n columns of a n × n matrix D, that is,
D = (v1,v2, · · · ,vn). Let X := D>D, then the ij-th entry of X is xij = vi · vj.
One can observe that (R) equals to the following SDP problem with only equality
constraints:

max 1
2

∑
i<j wij(1− xij)

(SDP) such that xii = 1,∀i ∈ V, X is symmetric positive semidefinite.
(19)

We use one classical interior-point method (Helmberg et al., 1996) to solve the SDP
problem in (19).

1

2 3

heavy edgehe
av

y e
dg

e

light edge

1

2 3

cut
random hyperplane

unit sphereinput graph

Figure 1: A geometric view of
Algorithm 1

A geometric view in Figure 1 explains the essense
of Algorithm 1: It maps vertices to vectors on the
unit sphere. A feasible SDP solution corresponds to
a point configuration on the unit sphere, while a feasi-
ble solution to MaxCut assigns a sign variable {±1}
with every graph vertex. An optimal solution of SDP
tends to send adjacent vertices with heavy edges to
antipodal points, thereby maximizing (1− vi · vj)/2.
A rounding technique is required that separates most
far away pairs, and hence keeps close pairs together.
Random hyperplane rounding works gracefully: A random hyperplane through the
origin partitions the sphere into two halves, which correspond to cut parts (see Fig-
ure 1). The ratio between the expected cut value over the maximum cut value is
never worse than α u .87856, which is the expected approximation guarantee.

7

4. Calculate posterior probability of cuts

Given the geometric interpretation of the MaxCut-SDP algorithm in Section 3, we
can derive the scheme to calculate posterior probability of cuts here, which will be
used to evaluate the posterior agreement in Equation 1.

In step t, the relaxed SDP problem (18) outputs the n intermediate vectors Ot =
{v1,v2, · · · ,vn}. Each cut c := (S, S̄), where S = {1, . . . , `}, S̄ = {` + 1, . . . , n},
induces a set,

B(c) = {b1, · · · , bn} := {v1, · · · ,v`,−v`+1, · · · ,−vn}.

B(c) is used to define a polygonal intersection cone:

Definition 1 (Polygonal intersection cone). The cone C determined by cut c = (S, S̄)
is the intersection of n half-spaces:

C = C(c) := {x ∈ Rn, ‖x‖2 ≤ 1 | x · bi ≥ 0,∀i ∈ V }. (20)

It determines the posterior of the corresponding cut by Lemma 1 (all proof of
lemmas are in Appendix A) in the following,

Lemma 1. The posterior P(c|G) of a cut c is

P(c|G) =
2 ∗ unit spherical area of C(c)

area of unit sphere
=

2 ∗ volume of C(c)

volume of unit ball
=

2 ∗ solid angle of C(c)

solid angle of unit sphere
.

(21)

Ensured by Lemma 1, the cut probabilities are measured either by spherical area,
by volume or by solid angle. Without loss of generality, we calculate the solid angle
to derive P(c|G). Since it is convenient to express the method of calculating solid
angle in terms of the spanning cone definition, let us transform the intersection cone
C into the spanning cone,

Definition 2 (Polygonal spanning cone). According to Tiel (1984), a polygonal span-
ning cone is spanned by a set of n linearly independent unit vectors A = {a1,a2, · · · ,an}
in Rn:

C ′ := {x ∈ Rn, ‖x‖2 ≤ 1 | x =
∑n

i=1
λiai, λi ≥ 0, 1 ≤ i ≤ n}

Given an intersection cone C, one can get an equivalent spanning cone C ′ by
taking A> = B−1, which is ensured by,

Lemma 2. Given one intersection cone C (Definition 1) and one spanning cone C ′

(Definition 2), if ∃k1, · · · , kn > 0, s.t., A> = diag(k1, · · · , kn)B−1, then C ′ = C.

8

Algorithm 2: Calculate posterior of each cut

Input: independent vectors {v1,v2, · · · ,vn} on Sn−1

Output: posterior of each cut P(c|G),∀c ∈ C
1 for each cut c ∈ C do
2 get the cut induced set B
3 A> ← B−1; //ensured by Lemma 2

4 compute P(c|G) by Equations 23 and 22;

5 return P(c|G),∀c ∈ C

Now we have the spanning cone C ′ associated with the cut c, we borrow the
results of n-dimensional solid angle calculating (Hajja and Walker, 2002; Ribando,
2006): The solid angle of a spanning cone C ′ from Definition 2 is given by:

E = | det(A)|
∫
S

‖As‖−n2 dS, (22)

where the integral is calculated over a unit sphere ‖s‖2 = 1 in the positive orthant
given by si ≥ 0. Combined with the fact that the solid angle subtended by Sn−1 is

Ωn = 2π
n
2

Γ(n
2

)
(Γ(·) is the Gamma function), according to Equation 21,

P(c|G) = 2E/Ωn = E · Γ(n/2)/π
n
2 . (23)

The complete procedure1 to calculate the posterior probability of each cut is summa-
rized in Algorithm 2.

The way to exactly evaluate the surface integral (Equation 22) is in Appendix B.
It involves a (n − 1)-variate integral, which is computationally intractable, we only
use it in the low dimensional case as ground truth.

Sampling to approximate posterior of cut. For the high dimensional case, en-
sured by Lemma 1, we propose one simple and efficient sampling method in Algorithm
3 to approximate the posterior: In each iteration it uniformly samples one hyperplane
with normal vector r and records the cut c separated by that hyperplane, then it es-
timates P(c|G) by the statistics of each cut’s frequency of occurrence. Theoretical
analysis of approximation guarantee of Algorithm 3 and space-efficient implementa-
tion of it is in Appendix C and D, respectively.

5. Experiments

We compare the MaxCut-SDP algorithm (abbreviated as “SDP” in the following)
with two representative greedy MaxCut algorithms: The double greedy D2Greedy

1. If the n intermediate vectors Ot = {v1,v2, · · · ,vn} have mutual dependencies, one can add small
perturbations to them in order to make them independent, and the perturbation would still be
insignificant w.r.t. vector positions.

9

Algorithm 3: Approximate cut’s posterior by sampling

Input: {v1,v2, · · · ,vn} on Sn−1, #samplings
Output: approximate posterior of each cut

1 initialize count(c)← 0,∀c ∈ C;
2 for each r uniformly sampled from Sn−1 do
3 c̃← (S, S̄), where S = {i | vi · r ≥ 0,∀i ∈ V };
4 count(c̃)← count(c̃) + 1;

5 return P(c|G) u count(c)/#samplings,∀c ∈ C

(Deterministic Double Greedy algorithm in Buchbinder et al. (2012)), and the back-
ward greedy EC (Edge Contraction algorithm in Kahruman et al. (2007)). The way to
evaluate their posteriors (approximation sets) can be found in Bian et al. (2015). Let
WA (G) be the cut value generated by an algorithm A on graph G, W∗(G) be the
optimal cut value of G. The approximation ratio of an algorithm A is the worst-case
bound minG

WA (G)
W∗(G)

, which ranks the three algorithms as SDP � D2Greedy � EC. Since

finding W∗(G) for NP-complete problem is non-trivial, we use WA (G)
W (G)

(W (G): total

weight of G) as a natural lower bound of WA (G)
W∗(G)

.

Experimental setting. We experiment with the Gaussian edge weights model
(Gronskiy and Buhmann, 2014): The graph instances are generated in a two-step
fashion: Firstly, a random “master” graph G is generated with Gaussian distributed
edge weights wij ∼ N(µ, σ2

m), µ = 300, σm = 50, negative edges are set to be µ.
Secondly, noisy graphs G′, G′′ are obtained by adding Gaussian distributed noise
nij ∼ N(0, σ2), negative edges are set to be zero. We perform 1000 repeated noisy
samplings to estimate the expectation over (G′, G′′) in Equation 2.

Results and analysis. Figure 2 shows the temporal information content (IA
t in

Equation 2) for two σ values: 10 and 58. For all the algorithms, IA
t increases at

the beginning. After reaching some optimal step t∗, where the highest IA
t (IA in

Equation 2) is achieved, it decreases and finally vanishes. This observation confirms
the principle of regularization by early stopping at time t∗ when maximum IA

t is
reached.

Figure 3 shows (a) the information content, and (b) the fully overlapping curves
WA (G′)/W (G′), WA (G′′)/W (G′′), respectively. σ controls the noise level, larger σ
means larger noise. In the noiseless case, G′ = G′′, so P(c|G′) = P(c|G′′), and
IA
t = EG′,G′′ [log(|C|

∑
c∈C P2(c|G′))]. All algorithms start with uniform distribution

of solutions when t = 0; as the algorithm proceeds, the distribution of solutions
concentrates more and more on a small support,

∑
c∈C P2(c|G′) increases and reaches

a maximum in the final step, so all algorithms reach the maximum IA
t in the final

step. For greedy algorithms (D2Greedy and EC), there is only one final solution

10

10 0 10 1 10 2

Step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
te

pw
is

e
In

fo
rm

at
io

n
pe

r
N

od
e

(s
ig

m
a

=
 1

0)

EC
D2Greedy
SDP

10 0 10 1 10 2

Step

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

S
te

pw
is

e
In

fo
rm

at
io

n
pe

r
N

od
e

(s
ig

m
a

=
 5

8)

EC
D2Greedy
SDP

Figure 2: IA
t per vertex w.r.t. t (a) σ = 10 (b) σ = 58 (n = 50)

with probability 1 in the last step, so
∑

c∈C P2(c|G′) = 1 and the maximum IA
t is

log(|C|) = log(2n−1 − 1), as shown by Figure 3(a). For SDP, however, when σ = 0,
SDP can only approximately solve the input graphs, in the last step there are several
solutions with non-zero probability, which renders its information content less than
log(|C|).

It is worth noting that for greedy algorithms (D2Greedy and EC), the higher the
approximation ratio is for noisy graphs, the lower is the information content achieved
by the algorithm. This behavior is quite intuitive since high approximation ratio
means better adaptation to empirical fluctuations and, therefore, overfitting to noisy
graphs. Consequently, there will be less agreement between the solutions of the two
noisy graphs and the information content of the algorithm drops. A similar conclusion
has also been drawn in Bousquet and Bottou (2008).

However, for non-greedy algorithm SDP, there are two factors affecting its infor-
mation content: The approximation ratio and its probabilistic weighting strategy
to down-weight solutions without discarding them. SDP keeps all the possible solu-
tions, instead of removing the bad solutions as greedy algorithms do, it assigns less
probabilistic weights to them, so it can capture some uncertainty in the input.

The information content of SDP shows the influence of both factors: For low noise,
the probabilistic weighting strategy dominates, SDP outperforms greedy algorithms
in information content; while in high noise level, the influence of approximation ratio
dominates, and SDP is inferior to greedy algorithms.

6. Discussion and conclusion

IA in Equation (2) measures the information content of an algorithm given a noisy
source of instances. We theoretically justify this criterion, and apply it to study the
robustness of MaxCut algorithms with different approximation ratios. Of particular
interest is the SDP based algorithm by Goemans and Williamson (1995), since it
pursues a non-greedy strategy for MaxCut.

11

0 10 20 30 40 50 60 70 80 90 100

Noise [std. dev.]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
fo

rm
at

io
n

C
on

te
nt

 p
er

 N
od

e
[b

its
]

EC
D2Greedy
SDP

0 10 20 30 40 50 60 70 80 90 100

Noise [std. dev.]

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

R
at

io
s

ov
er

 N
oi

sy
 G

ra
ph

s

EC
D2Greedy
SDP

Figure 3: (a) IA per vertex w.r.t. σ (b) WA (G′)
W (G′)

, WA (G′′)
W (G′′)

Comparison of SDP with two representative greedy MaxCut algorithms (D2Greedy
and EC) demonstrates that the ability of this approximation algorithm to achieve a
high approximation ratio might decrease its generalization ability. The property of
an algorithm to efficiently find a good empirical minimum might increase its fragility
due to noise adaptation. This observation could be generalized or even proved for
general approximation algorithms provided that the algorithms operate in a similar
settings or use similar optimization strategies.

The posterior agreement based criterion also enables a meta-algorithm to search
for more informative algorithms. Algorithms are usually tuned by parameter adap-
tation or by modifying the algorithmic strategy in the spirit of genetic programming.
Thereby, the meta-algorithm will search through the space of algorithms guided by
maximal gradient ascent on posterior agreement. With a validation criterion as pos-
terior agreement, we enable algorithm engineering to explore multi-objective opti-
mization of algorithms with respect to time, space and robustness.

Acknowledgment

The authors would like to thank the suggestions from all the anonymous reviewers.

12

References

Rakesh Agrawal, Sridhar Rajagopalan, Ramakrishnan Srikant, and Yirong Xu. Min-
ing newsgroups using networks arising from social behavior. In WWW, pages 529–
535, 2003.

Yatao Bian, Alexey Gronskiy, and Joachim M. Buhmann. Greedy maxcut algorithms
and their information content. In IEEE Information Theory Workshop (ITW),
pages 1–5, 2015.

Olivier Bousquet and Léon Bottou. The tradeoffs of large scale learning. In NIPS,
pages 161–168, 2008.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear
time (1/2)-approximation for unconstrained submodular maximization. In FOCS,
2012, pages 649–658. IEEE, 2012.

Joachim M. Buhmann. Information theoretic model validation for clustering. In ISIT,
pages 1398–1402, 2010.

Rich Caruana, Steve Lawrence, and Lee Giles. Overfitting in neural nets: Backprop-
agation, conjugate gradient, and early stopping. In NIPS, volume 13, page 402,
2001.

Michel X Goemans and David P Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM, 42(6):1115–1145, 1995.

Alexey Gronskiy and Joachim M. Buhmann. How informative are minimum spanning
tree algorithms. In ISIT, 2014.

Torben Hagerup and Christine Rüb. A guided tour of chernoff bounds. Information
processing letters, 33(6):305–308, 1990.

Mowaffaq Hajja and Peter Walker. The measure of solid angles in n-dimensional
euclidean space. International Journal of Mathematical Education in Science and
Technology, 33(5):725–729, 2002.

Christoph Helmberg, Franz Rendl, Robert J Vanderbei, and Henry Wolkowicz. An
interior-point method for semidefinite programming. SIAM Journal on Optimiza-
tion, 6(2):342–361, 1996.

Sera Kahruman, Elif Kolotoglu, Sergiy Butenko, and Illya V Hicks. On greedy con-
struction heuristics for the maxcut problem. International Journal of Computa-
tional Science Engineering, 3(3):211–218, 2007.

13

Jason M Ribando. Measuring solid angles beyond dimension three. Discrete & Com-
putational Geometry, 36(3):479–487, 2006.

Jan van Tiel. Convex analysis. John Wiley, 1984.

Irène Waldspurger, Alexandre d’Aspremont, and Stéphane Mallat. Phase recovery,
maxcut and complex semidefinite programming. Mathematical Programming, 149
(1-2):47–81, 2015.

Jun Wang, Tony Jebara, and Shih-Fu Chang. Semi-supervised learning using greedy
max-cut. JMLR, 14(1):771–800, March 2013. ISSN 1532-4435.

14

Appendix

A. Proofs

A.1 Detailed proof in Section 2.4

The classical mutual information determines a lower bound on information content
defined in Equation 2. The classical mutual information I(G′;G′′) is defined as

I(G′;G′′) = EG′,G′′ log
P(G′, G′′)

P(G′)P(G′′)
(24)

From the definition of virtual communication scenario, the data instances G′, G′′

can be treated to be drawn from a mixture distribution, as illustrated in Figure 4.

Figure 4: Illustration of
the mixture distribution

We consider the special transformations that map from
input space to output spaces, then the joint probability
can be factorized in the following way,

P(G′, G′′) =
∑
c∈C

∑
T∈TM

P(G′, G′′|c, T)P(c, T)

=
M∑
j=1

pj
∑
τj∈T

∑
c∈C

P(G′, G′′|τj, c)P(τj, c)

(a)
=

M∑
j=1

pj
∑
τj∈T

∑
c∈C

P(G′|τj, c)P(G′′|τj, c)P(c|τj)P(τj)

(b)
=

M∑
j=1

pj
∑
τj∈T

P(τj)
∑
c∈C

P(c|G′, τj)
P(c|τj)

P(G′|τj)
P(c|G′′, τj)
P(c|τj)

P(G′′|τj)P(c|τj)

(c)
=

M∑
j=1

pj
∑
τj∈T

P(G′|τj)P(G′′|τj)P(τj)
∑
c∈C

P(c|G′, τj)P(c|G′′, τj)
P(c|τj)︸ ︷︷ ︸

=k̃(τj◦G′,τj◦G′′)

Step (a) exploits the fact that conditioning on the transformation τj and hypothesis c
renders G′, G′′ statistically independent since the two instances are drawn i.i.d. from
the same component of the mixture distribution; (b) applies Bayes rule twice. In step
(c) we define the generalized posterior agreement as

k̃(G′, G′′) :=
∑
c∈C

P(c|G′)P(c|G′′)
P(c)

.

From condition 2) of the definition of the transformation set T, one can get that

k̃(τj ◦G′, τj ◦G′′) = k̃(G′, G′′) (25)

15

Combining Equation 25 with (c) one can get,

P(G′, G′′)

P(G′)P(G′′)
= k̃(G′, G′′)

∑M
j=1 pj

∑
τj∈T P(G′|τj)P(G′′|τj)P(τj)∑M

j=1 pj
∑

τj∈T P(G′|τj)P(τj)
∑M

l=1 pl
∑

τl∈T P(G′′|τl)P(τl)︸ ︷︷ ︸
to be proved = |T|

(26)

= k̃(G′, G′′)|T| (27)

Let us prove Equation 27 first of all. We simplify the term,

∑M
j=1 pj

∑
τj∈T P(G′|τj)P(G′′|τj)P(τj)∑M

j=1 pj
∑

τj∈T P(G′|τj)P(τj)
∑M

l=1 pl
∑

τl∈T P(G′′|τl)P(τl)
=∑M

j=1 pj
∑

τj∈T P(G′|τj)P(G′′|τj)P(τj)∑M
j=1

∑M
l=1

∑
τj∈T

∑
τl∈T pjplP(τj)P(τl)P(G′|τj)P(G′′|τl)

=∑M
j=1 pj

∑
τj∈T P(G′|τj)P(G′′|τj)P(τj)∑M

j=1

∑
τj∈T p

2
jP(τj)2P(G′|τj)P(G′′|τl) +

∑
j 6=l
∑

τj∈T
∑

τl∈T pjplP(τj)P(τl)P(G′|τj)P(G′′|τl)
(28)

We further make the simplifying assumption that P(τj) = P(τl) = 1/|T|, then

⇒
1
|T|
∑M

j=1 pj
∑

τj∈T P(G′|τj)P(G′′|τj)
1
|T|2

(∑M
j=1

∑
τj∈T p

2
jP(G′|τj)P(G′′|τl) +

∑
j 6=l
∑

τj∈T
∑

τl∈T pjplP(G′|τj)P(G′′|τl)
)

= |T|
∑M

j=1 pj
∑

τj∈T P(G′|τj)P(G′′|τj)(∑M
j=1 p

2
j

∑
τj∈T P(G′|τj)P(G′′|τl) +

∑
j 6=l pjpl

∑
τj∈T

∑
τl∈T P(G′|τj)P(G′′|τl)

)
pj=∆js

= |T|
∑

τs∈T P(G′|τs)P(G′′|τs)∑
τs∈T P(G′|τs)P(G′′|τs) +

∑
j 6=l ∆js∆ls︸ ︷︷ ︸

= 0 for l 6= j

∑
τj∈T

∑
τl∈T P(G′|τj)P(G′′|τl)

= |T|

16

Inserting Equation (27) into Equation (24) proves the claim that the mutual in-
formation is a lower bound on the information content:

I(G′;G′′) = EG′,G′′ log
P(G′, G′′)

P(G′)P(G′′)

= EG′,G′′ log k̃(G′, G′′)

= EG′,G′′ log
∑
c∈C

P(c|G′)P(c|G′′)
P(c)

≤ EG′,G′′ log |C|
∑

c∈C
P(c|G′)P(c|G′′)

= I(G′;G′′).

With the uniform distribution P(c) = |C|−1, I(G′;G′′) is maximized and we derive
the information content in Equation 2.

A.2 Proof of Lemma 1

Proof. For a specific cut c := (S, S̄), assume the collections of normal vectors of all
hyperplanes that give the cut c is R(c), according to the random hyperplane rounding
technique,

R(c) ={r ∈ Sn−1 | r · bi ≥ 0,∀i ∈ V } (29)

∪ {r ∈ Sn−1 | r · bi ≤ 0,∀i ∈ V }
So R(c) is two times the unit spherical surface of C(c). Considering the fact that
normal vectors of all hyperplanes constitute the surface of unit sphere, we get the
first equality in (21). Using simple geometrical knowledge, we can get the second and
third equalities.

A.3 Proof of Lemma 2

Proof. C ′ = C ⇔ any point in C ′ must be in C ⇔ (
∑n

1 λiai) · bj ≥ 0, 1 ≤ i, j ≤ n
holds ∀λi ≥ 0 ⇔ (λ1, · · · , λn) · ATB ≥ 0 holds ∀(λ1, · · · , λn) ≥ 0

So if ∃k1, · · · , kn > 0, s.t. AT = diag(k1, · · · , kn)B−1, one can get that (λ1, · · · , λn)·
ATB ≥ 0 holds ∀(λ1, · · · , λn) ≥ 0, so C ′ = C.

B. Exactly evaluate the surface integral (Equation 22)

Exactly calculating probability of cuts involves evaluating the high dimensional sur-
face integral in Equation 22, To do this, we first of all parametrize it using spherical po-
lar coordinates, then transform it to be a multivariate integral. Writing s =

∑n
1 siei,

we get:

‖As‖2
2 =

n∑
i=1

ai · ais2
i + 2

∑
i<j

ai · ajsisj = 1 + 2
∑
i<j

ai · ajsisj (30)

17

Plugging Equation 30 into 22 one can express the surface integral in a more manage-
able form

E = | det(A)|
∫
S

(1 + 2
∑
i<j

ai · ajsisj)−n/2dS = | det(A)|
∫
S

f−n/2(s)dS (31)

where f(s) = 1+2
∑

i<j ai ·ajsisj. Then parametrizing by spherical polar coordinates
θ = (θ1, · · · , θn−1):

si = cos(θi)
i−1∏
j=1

sin(θj), i = 1, · · · , n− 1; sn =
n−1∏
i=1

sin(θi) (32)

for 0 ≤ θi ≤ π/2, 0 ≤ i ≤ n − 1, considering that the Jacobian is
∏n−2

i=1 sinn−1−i(θi),
substitute Equation 32 to Equation 31 it reaches the multivariate integral:

E = |det(A)|
∫
θ1

· · ·
∫
θn−1

∏n−2
i=1 sinn−1−i(θi)

fn/2(θ)
dθ1 · · · dθn−1 (33)

C. Theoretical analysis of Algorithm 3

We will show that for a cut c with high ground truth probability pc := P(c|V), the
estimated cut probability p̂c by uniform sampling in Algorithm 3 will be close to pc
with high probability.

Let k = #samplings, random variable Xi = 1 means recovering cut c in the ith

sampling, Xi = 0 means not recovering c in the ith sampling. So p̂c =
∑k

i=1Xi/k,
from the Chernoff-Hoeffding theorem (Hagerup and Rüb, 1990), for ε > 0,

P(p̂c ≥ pc + ε) ≤

[(
pc

pc + ε

)pc+ε(
1− pc

1− pc − ε

)1−pc−ε
]k

= e−D(pc+ε||pc)k

≤
(

pc
pc + ε

)k(pc+ε)

· ekε

P(p̂c ≤ pc − ε) ≤

[(
pc

pc − ε

)pc−ε(1− pc
1− pc + ε

)1−pc+ε
]k

= e−D(pc−ε||pc)k ≤
(

pc
pc − ε

)k(pc−ε)

· e−kε

where D(·) is the Kullback-Leibler divergence between two Bernoulli random vari-
ables.

So to ensure that with probability at most δ < 1, the estimated probability p̂c is
at most ε-distant from the true probability pc, one need to ensure that:

max(e−D(pc+ε||pc)k, e−D(pc−ε||pc)k) ≤ δ

18

Algorithm 4: Pseudo-code to calculate estimate of
∑

c P(c|G′)P(c|G′′) when
k < |C|
Input: cutIndices(G′), cutIndices(G′′) ∈ Rk, wherein the indices are in

ascending order
Output: estimate of

∑
c P(c|G′)P(c|G′′)

1 initialize idx1 = idx2 = 1, sum = 0;
2 while idx1 ≤ k && idx2 ≤ k do
3 if cutIndices(G′)idx1 == cutIndices(G′′)idx2 then
4 commonIdx = cutIndices(G′)idx1;
5 cutNum1 = cutNum2 = 1;
6 idx1 + +, idx2 + + ;
7 while idx1 ≤ k && commonIdx == cutIndices(G′)idx1 do
8 cutNum1 + +, idx1 + +;

9 while idx2 ≤ k && commonIdx == cutIndices(G′′)idx2 do
10 cutNum2 + +, idx2 + +;

11 sum+ = cutNum1 ∗ cutNum2;

12 else if cutIndices(G′)idx1 < cutIndices(G′′)idx2 then
13 idx1 + +;

14 else
15 idx2 + +;

16 return
∑

c P(c|G′)P(c|G′′) u sum/k2

which is equivalent to:

k ≥ max

(
− ln δ

D(pc + ε||pc)
,

− ln δ

D(pc − ε||pc)

)
(34)

which gives the lower bound of the sampling number k required to recover the ground
truth pc with probability δ at a specific error level ε.

D. Space-efficient implementation of Algorithm 3

When sampling number k ≥ |C|, use array cutFrequency ∈ R|C| to record cuts’
frequency of occurrence, and the posterior agreement

∑
c P(c|G′)P(c|G′′) is estimated

as the inner product 〈cutFrequency(G′), cutFrequency(G′′)〉.
When k < |C|, use array cutIndices ∈ Rk to record indices of sampled cuts in

each sampling, note that there would be duplicated cuts in cutIndices. Then sort
the array cutIndices to make the indices in it be in ascending order. Finally, use the
way described by the pseudo-code in Algorithm 4 to calculate estimate of posterior
agreement

∑
c P(c|G′)P(c|G′′).

19

	1 Introduction
	1.1 MaxCut as an exemplary problem
	1.2 Algorithm analysis by algorithmic information content

	2 The coding by posterior framework
	2.1 Code book generation
	2.2 Communication protocol
	2.3 Error analysis of the virtual communication protocol
	2.4 Connection to classical mutual information

	3 MaxCut algorithm using SDP relaxation
	4 Calculate posterior probability of cuts
	5 Experiments
	6 Discussion and conclusion
	A Proofs
	A.1 Detailed proof in Section 2.4
	A.2 Proof of Lemma 1
	A.3 Proof of Lemma 2

	B Exactly evaluate the surface integral (Equation 22)
	C Theoretical analysis of Algorithm 3
	D Space-efficient implementation of Algorithm 3

